• 제목/요약/키워드: loss on ignition

검색결과 260건 처리시간 0.032초

Summer Environmental Evaluation of Water and Sediment Quality in the South Sea and East China Sea (남해 및 동중국해의 하계 수질 및 저질 환경평가)

  • Lee, Dae-In;Cho, Hyeon-Seo;Yoon, Yang-Ho;Choi, Young-Chan;Lee, Jeong-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • 제8권2호
    • /
    • pp.83-99
    • /
    • 2005
  • To evaluate environmental charateristics of the South Sea and East China Sea on summer, water and sediment quality were measured in June 2001-2003. Surface layer was affceted by Warm water originated from the high temperature and salinity-Tsushima Warm Current, on the other hand, Yellow Sea Cold Water was spread to the bottom layer in the south-western part of the Jeju island, and salinity at stations near the Yangtze River was decreased below 29psu because of a enormous freshwater discharges. Thermocline-depth was formed at about 10m, and chlorophyll maximum layer was existed in and below the thermocline. COD(Chemical Oxygen Demand), TN(Total Nitrogen), and TP(Total Phosphorus) concentrations showed seawater quality grade II in surface layer of the most area, but concentrations of such as COD, Chl. a, TSS(Total Suspended Solid), and nutrients were greatly increased in the effect area of Yangtze River discharges. Correlations between dissolved inorganic nitrogen, Chl. a and salinity were negative patterns strongly, in contrast, those of inorganic phosphorus, COD and Chl. a were positive, which indicates that phytoplankton biomass and phosphorus are considered as important factors of organic matter distribution and algal growth, respectively. in the study area. The distribution of ignition loss, COD, and $H_2S$ of surface sediment were in the ranges of 2.61-8.81%, $0.64-11.86mgO_2/g-dry$, and ND-0.25 mgS/g-dry, respectively, with relatively high concentration in the eastern part of the study area. Therefore, to effective and sustainable use and management of this area, continuous monitoring and countermeasures about major input sources to the water and sediment, and prediction according to the environmental variation, are necessary.

  • PDF

Spatio-temporal Characteristics of Macrobenthic Community in the Coastal area of South Korea (우리나라 연안 대형저서동물 시·공간 군집 특성 분석)

  • KIM, Young-Jun;IM, Jung-Ho;CHO, Chun-Ok;RYU, Jong-Seong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • 제25권3호
    • /
    • pp.100-117
    • /
    • 2022
  • This study examines the spatio-temporal characteristics of the macrobenthic community in the coastal areas of South Korea for the past six years(2015-2020). The relationship between the number of individuals of macrobenthic species and the benthic environments were investigated using data collected at a total of 154 stations located in the West (70), the South (61), and the East Seas (23), except for the Jeju Sea. We examined the benthic environmental characteristics such as water depth, sediment, grain size, ignition loss, and total organic carbon. A total of 1,614 macrobenthic species were found in the coastal area, with a mean density of 0.62 ind./m2 by station. The mean density was relatively high in the spring and summer seasons (May to August) with more than 450 species. The most dominant species belong to Polychaetes and the top five of them accounted for more than 20% of the total number of populations. The top five species were Heteromastus filiformis, Scoletoma longifolia, Sigambra tentaculata, Sternaspis scutata, and Notomastus latericeus. Cluster analysis was performed on the top five dominant species. The stations were clustered into three groups with similar locations on the West, South, and East Sea. Cluster 1 and 3 represent Heteromastus filiformis (44% each), but cluster 2 represents Scoletoma longifolia (66%). Each cluster has different benthic environmental characteristics, especially in the sediment's sand (31.0%, 51.9%) and clay (15.9%, 9.7%) contents.

Identifying sources of heavy metal contamination in stream sediments using machine learning classifiers (기계학습 분류모델을 이용한 하천퇴적물의 중금속 오염원 식별)

  • Min Jeong Ban;Sangwook Shin;Dong Hoon Lee;Jeong-Gyu Kim;Hosik Lee;Young Kim;Jeong-Hun Park;ShunHwa Lee;Seon-Young Kim;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • 제25권4호
    • /
    • pp.306-314
    • /
    • 2023
  • Stream sediments are an important component of water quality management because they are receptors of various pollutants such as heavy metals and organic matters emitted from upland sources and can be secondary pollution sources, adversely affecting water environment. To effectively manage the stream sediments, identification of primary sources of sediment contamination and source-associated control strategies will be required. We evaluated the performance of machine learning models in identifying primary sources of sediment contamination based on the physico-chemical properties of stream sediments. A total of 356 stream sediment data sets of 18 quality parameters including 10 heavy metal species(Cd, Cu, Pb, Ni, As, Zn, Cr, Hg, Li, and Al), 3 soil parameters(clay, silt, and sand fractions), and 5 water quality parameters(water content, loss on ignition, total organic carbon, total nitrogen, and total phosphorous) were collected near abandoned metal mines and industrial complexes across the four major river basins in Korea. Two machine learning algorithms, linear discriminant analysis (LDA) and support vector machine (SVM) classifiers were used to classify the sediments into four cases of different combinations of the sampling period and locations (i.e., mine in dry season, mine in wet season, industrial complex in dry season, and industrial complex in wet season). Both models showed good performance in the classification, with SVM outperformed LDA; the accuracy values of LDA and SVM were 79.5% and 88.1%, respectively. An SVM ensemble model was used for multi-label classification of the multiple contamination sources inlcuding landuses in the upland areas within 1 km radius from the sampling sites. The results showed that the multi-label classifier was comparable performance with sinlgle-label SVM in classifying mines and industrial complexes, but was less accurate in classifying dominant land uses (50~60%). The poor performance of the multi-label SVM is likely due to the overfitting caused by small data sets compared to the complexity of the model. A larger data set might increase the performance of the machine learning models in identifying contamination sources.

Distribution of Organic Matter and Heavy Metals in the Surface Sediments from Fishery Resources Protection Areas in the Southwestern Coast of Korea (남서해연안 수산자원보호구역 표층 퇴적물 중 유기물 및 중금속 농도분포)

  • Koo, Jun-Ho;Lee, Garam;Hwang, Hyunjin;Kim, Jeong-Bae;Kim, Sang-Su;Hwang, Dong-Woon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • 제25권6호
    • /
    • pp.666-677
    • /
    • 2019
  • In order to understand the distribution of organic matter and heavy metal concentrations in the surface sediments of fishery resources protection areas (FRPAs), we measured the grain size, ignition loss (IL), chemical oxygen demand (COD), acid volatile sulfide (AVS), and concentrations of heavy metals (As, Cd, Cr, Cu, Fe, Hg, Pb, and Zn) in the surface sediments collected at 54 stations of 5 FRPAs (Gamak Bay, Yeoja Bay, Deukryang Bay, Wando coast, and Youngkwang coast) in the southwestern coast of Korea in February 2017. The surface sediments consisted of fine sediment such as mud, with 2.9~8.8Ø (7.4±0.1Ø) of mean grain size. The average concentrations of IL, COD, and AVS in the sediments were 4.63±0.96 %, 13.0±3.1 mgO2/g·dry, and 0.092±0.124 mgS/g·dry, respectively, and were lower for sediments from the Youngkwang coast than those from other FRPAs. The average concentrations of heavy metals in the sediment were 7.5±0.9 mg/kg for As, 0.04±0.02 mg/kg for Cd, 70.2±9.7 mg/kg for Cr, 15.3±2.8 mg/kg for Cu, 3.3±0.5 % for Fe, 0.014±0.003 mg/kg for Hg, 25.0±6.0 mg/kg for Pb, and 99±14 mg/kg for Zn, respectively, and were relatively higher for sediments in the inner bays than those from the outer bays and coasts. Based on the assessment of sediment samples using the sediment quality guidelines (SQGs), the pollutant load index (PLI), and the ecological risk index (ERI), the surface sediments of FRPAs in the southwestern coast of Korea do not appear to be polluted by heavy metals, suggesting that the heavy metal concentrations in the sediments would not adversely impact aquatic and benthic organisms.

Sanitary Characteristics of Seawater and Sediments in Tongyeong Harbor (통영항의 해수 및 저질의 위생학적 특성)

  • Park, Jun-Yong;Kim, hhhYeong-In;Bae, Ki-Sung;Oh, Kwang-Soo;Choi, Jong-Duck
    • Journal of Food Hygiene and Safety
    • /
    • 제25권4호
    • /
    • pp.367-375
    • /
    • 2010
  • The bacteriological and physiochemical analysis of sea water and sediments in Tongyeong harbor was conducted to evaluate sanitary conditions. The samples were collected at 8 stations established once a month from June, 2008 to May, 2009. During the study period, the range of temperature was from 6.7 to $25.2^{\circ}C$, transparency ranged from 1.2 to 2.6 m, chemical oxygen demand ranged from 1.90 to 2.92 mg/L, dissolved oxygen ranged from 6.2 to 10.5 mg/L, dissolved nitrogen ranged from 0.052 to 0.098 mg/L, phosphate ranged from 0.044 to 0.065 mg/L, respectively. Seafood, if eaten raw, carries the risk of food poisoning. Seafood poisoning is often cause by pathogenic microorganism originating from fecal contamination, such as Salmonella sp., Shigella sp. and norovirus. Fecal coliforms are an important indicator of fecal contamination. Therefore, data on fecal coliform are very important for evaluating the safety of fisheries in coastal areas. So, we investigated the sanitary indicate bacteria. The coliform group and fecal coliform MPN's of sea water in Tongyeong harbor were ranged from < 1.8~22,000/100 mL (GM 164.9 MPN/100 mL) and < 1.8~7,900 MPN/100 mL (GM 33.7 MPN/100 mL), respectively. Total coliform were detected 97.0% in 96 of samples and 68.9% of total coliforms were fecal coliforms. These results similar to another seawater detection ratio of total coloforms and fecal coliforms. The Vibrios was isolated and identified with VITEK system. Four hundred eighty strains that were obtained from sea water samples in Tongyeong harbor Detection ratio Vibrio alginolyticus, 34.2%, Vibrio parahaemolyticus, 13.8%, Vibrio vulnificus 10.0%, and V. mimicus 12.5% respectively. Vibrio cholerae O1, was not detected. During the study period, the ranges of water content, ignition loss, COD, and acid volatile sulfates in sediments in Tongyeoung harbor were 41.0~57.4%, 7.8~10.5%, 6.51~9.30 mg/g, 0.04~0.09 mg/g, respectively. Heavy metals in sediment of Tongyeoung harbor were Cd, $0.10{\pm}0.05$; Cu, $4.79{\pm}8.20$; As, $1.95{\pm}0.17$; Hg, $0.10{\pm}0.07$; $Cr^{6+}$, $0.34{\pm}0.12$; Zn, $125.33{\pm}16.40$; Ni, $16.43{\pm}1.93$ mg/kg.

Investigation of Nutrient Release from the Sediments Near Weir in the Namhan River (남한강 보 구간 퇴적물의 영양염류 용출에 관한 연구)

  • Kim, Hye Yeon;Huh, In Ae;Choi, Jung Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제35권8호
    • /
    • pp.554-563
    • /
    • 2013
  • The purpose of this study is to evaluate the possibility of nutrient release at up and downstream of Kangchun weir, upstream of Yuju and Ipo weir in Namhan River. For this survey, we measured basic characteristics of the sediments (water content, ignition loss, TOC, TP, SRP, TN, phosphorus fractionation) and conducted nutrients release experiments under both aerobic and anaerobic condition. The overlying water from the sediment-water column was analyzed for nutrients (i.e. TP, $PO_4$-P, TN, $NO_3$-N, $NH_3$-N) everyday for 18days. Result of soil texture experiment showed that sediments are Sand. SRP concentration before the release experiment was different with the value after the release experiment. According to this result, we can find that there were more activated release processes in anaerobic condition. $PO_4$-P increased from 1 to 8 days and remained at the maximum value (7~8 days) afterward. The rapidly increase of $PO_4$-P was observed from 1 to 2~3 days whereas the TP continuously increase from 1 to 18 days. The $PO_4$-P release rate calculated by up to 7~8 days data highly correlated with initial SRP concentration with $R^2$=0.8502. $NO_3$-N release rate appears constantly decreasing trend as -5.7~-3.08 $mg/m^2{\cdot}day$, otherwise the $NH_3$-N release rate, by-product of a organic matter decomposition using nitrate as electron acceptor, was 0.57~2.41 $mg/m^2{\cdot}day$. Substantial portion in TN can be induced by organic nitrogen which originated from the tributary passing through non-point pollutant source. Compared with other similar researches, phosphorus and nitrogen release rates obtained in this study can be considered as relatively low values. Since this study targeted the sediments accumulated by one time of flooding season, there are limitation to generalize theses results. Therefore, it is necessary to consistently monitor and investigate the accumulation of nutrients in the sediment for understanding the effect of weir construction on the overlying water quality.

Relationship between Physicochemical Properties, Heavy Metal Contents and Magnetic Susceptibility of Soils (토양의 물리화학적 특성, 중금속 함량, 대자율 간의 상호관계 연구)

  • Chon, Chul-Min;Park, Jeong-Sik;Kim, Jae-Gon;Lee, Youn-Soo
    • Journal of the Mineralogical Society of Korea
    • /
    • 제23권4호
    • /
    • pp.281-295
    • /
    • 2010
  • This paper deals with magnetic susceptibility, mineralogy, soil properties (pH, EC, CEC, loss on ignition), iron and manganese oxides, the content and partitioning of heavy metals (As, Cd, Cr, Cu, Ni, Pb, Zn), and their mutual relationship in the soil samples of an unpolluted, abandoned mine area, and industrial complex area. The various minerals derived from weathered bedrock were identified by X-ray diffraction in the unpolluted soil samples, except for the magnetic minerals. XRD analysis also revealed the existence of hematite and magnetite related to mine tailings and waste rocks in the abandoned mine area samples. The industrial complex area samples had carbonate minerals, such as calcite and dolomite, that might be due to anthropogenic deposition. The sum of the reducible, oxidizable, and residual fractions was over 80% for the abandoned mine area samples and over 50% for the industrial complex area samples using the sequential extraction method. The industrial complex area samples had a relatively high carbonate fraction that was associated with carbonate minerals. The content of aqua regia-extractable Fe, Mn, As, and Zn had a high positive correlation with the content of the dithionite-citrate-bicarbonate (DCB)-extractable method related to Fe/Mn oxide phases. The 54% and 58% of aqua regia-extractable Fe and As content, respectively, acted together with the concentrations of the DCB-extractable phases. Magnetic susceptibility values of total samples ranged from 0.005 to $2.131{\times}10^{-6}m^3kg^{-1}$. The samples including iron oxide minerals, such as hematite and magnetite, had a high magnetic susceptibility. The magnetic susceptibility showed a significant correlation with the heavy metals, Cd (r=0.544, p<0.05), Cr (r=0.714, p<0.01), Ni (r=0.645, p<0.05), Pb (r=0.703, p<0.01), and Zn (r=0.496, p<0.01), as well as Fe (r=0.608, p<0.01) and Mn (r=0.615, p<0.01). The aqua regia-extractable Fe and Mn content had a significant positive correlation with Cd, Cr, Cu, Ni, and Zn. However, the DCB-extractable Fe and Mn content had a significant positive correlation with As and Ni, indicating that the heavy metals were associated with Fe and Mn oxide minerals.

Bacteriological and Physiochemical Quality of Seawater and Surface Sediments in Sacheon Bay (사천만의 해수 및 표층 퇴적물의 세균학적 및 이화학적 특성)

  • Park, Jun-Yong;Kim, Yeong-In;Bae, Ki-Sung;Oh, Kwang-Soo;Choi, Jong-Duck
    • Journal of agriculture & life science
    • /
    • 제44권2호
    • /
    • pp.7-15
    • /
    • 2010
  • This study was conducted to investigate the bacteriological and physiological quality of seawater and surface sediments in Sacheon Bay of Korea from January to September in 2009. During the study period, the means of temperature was range from 5.3 to $24.9^{\circ}C$ (mean $17.7{\pm}0.4^{\circ}C$), transparency range from 1.4 to 2.5 m (mean $1.8{\pm}0.5m$), suspended solid ranged from 16.2 to 35.8 mg/L (mean $24.2{\pm}2.2mg/L$), chemical oxygen demand ranged from 1.42 to $3.29mgO_2/L$ (mean $2.06{\pm}0.55mgO_2/L$), dissolved oxygen ranged from 6.7 to 9.5mg/L (mean $7.9{\pm}0.6mg/L$), respectively. Seafood, if eaten raw, carries the risk of food poisoning. Seafood poisoning is often cause by pathogenic microorganism originating from fecal contamination, such as Salmonella sp., Shigella sp. and norovirus. Fecal coliforms are an important indicator of fecal contamination. Therefor, data on fecal coliform are very important for evaluating the safety of fisheries in coastal areas. So, we investigated the sanitary indicate bacteria. In this study, 56 sea water samples were collected from the Sacheon Bay, and total and fecal coliforms were compared and analyzed. The coliform group and fecal coliform MPN's of sea water in Sacehon Bay were ranged from <1.8~7,900 MPN/100mL (GM 214.7 MPN/100mL) and <1.8~330 MPN/100mL (GM 9.7 MPN/ 100mL), respectively. Total coliforms were detected in 75.0% of the samples and 76.2% of the total coliforms were fecal coliforms. During the study period, the means of water content, ignition loss, COD, and acid volatile sulfates in sediments in Sacheon Bay were $53.28{\pm}2.58%$, $9.38{\pm}0.42%$, $14.23{\pm}3.36mgO_2/g$, $0.09{\pm}0.07mgS/g$, respectively.

Spatial and Temporal Changes in Sediments of Major Tidal Flats in the Western and Southern Korean Coasts: Grain Size, Organic Matter, Trace Metals (한반도 서·남해 주요 갯벌 퇴적물의 시·공간적 변화: 입도, 유기물, 중금속)

  • KIM, EUNYOUNG;RYU, SANG-OK;CHOI, DAE-UP;LEE, JAE-HWAN;OH, HA-NEUL;OH, SUN-KWAN;KHO, BYUNG-SEOL;KIM, YOUNG NAM;YEO, JEONG WON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • 제24권1호
    • /
    • pp.54-63
    • /
    • 2019
  • As a part of the national marine ecosystem monitoring program, the temporal and spatial variation of sedimentary environment and pollution of organic matters and trace metals from four major tidal flats, i.e., Ganghwa Is., Garolim bay, Jeung Is., Suncheon bay, was investigated for 3 yerars from 2015 to 2017. The mean grain size of the sediment was $5.0-5.3{\varnothing}$ at Ganghwa Is, $4.5-4.8{\varnothing}$ at Garolim bay, $6.1-6.5{\varnothing}$ at Jeung Is, and $8.6-8.7{\varnothing}$ at Suncheon bay. The mean grain size (Mz) tended to decrease from the north (Ganghwa Is.) to the south (Suncheon bay). The ignition loss (IL) was 15.5% in Suncheon bay in 2015, which was relatively high compared to other sites, but gradually decreased over time from 8.3% in 2016 to 7.0% in 2017. In Jeung Is. and Suncheon bay, the concentration of Zn and As exceeded the threshold effect level (TEL) at some stations, but the range of trace metals in the other sites was below the level. In Jeung Is., the Mz and concentration of trace metals except Hg was positively correlated (r= 0.40-0.88, P<0.05). On the other hand, Mz was negatively correlated with trace metals (P<0.05) in Suncheon bay. The geoaccumulation index ($I_{geo}$) to evaluate contamination status of sediments for trace metal was less than 1(not contaminated) for Cu, Zn, Pb, Cd and Hg, and 2-3 (moderately to strongly polluted) for As at several stations in Suncheon bay and Jeung Is.

The Spatio-temporal Distribution of Organic Matter on the Surface Sediment and Its Origin in Gamak Bay, Korea (가막만 표층퇴적물중 유기물량의 시.공간적 분포 특성)

  • Noh Il-Hyeon;Yoon Yang-Ho;Kim Dae-Il;Park Jong-Sick
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • 제9권1호
    • /
    • pp.1-13
    • /
    • 2006
  • A field survey on the spatio-temporal distribution characteristics and origins of organic matter in surface sediments was carried out monthly at six stations in Gamak Bay, South Korea from April 2000 to March 2002. The range of ignition loss(IL) was $4.6{\sim}11.6%(7.1{\pm}1.6%)$, while chemical oxygen demand(CODs) ranged from $12.25{\sim}99.26mgO_2/g-dry(30.98{\pm}19.09mgO_2/g-dry)$, acid volatile sulfide(AVS) went from no detection(ND)${\sim}10.29mgS/g-dry(1.02{\pm}0.58mgS/g-dry)$, and phaeopigment was $6.84{\sim}116.18{\mu}g/g-dry(23.72{\pm}21.16{\mu}g/g-dry)$. The ranges of particulate organic carbon(POC) and particulate organic nitrogen(PON) were $5.45{\sim}23.24 mgC/g-dty(10.34{\pm}4.40C\;mgC/g-dry)$ and $0.71{\sim}2.99mgN/g-dry(1.37{\pm}0.58mgN/g-dry)$, respectively. Water content was in the range of $43.1{\sim}77.6%(55.8{\pm}5.6%)$, and mud content(silt+clay) was higher than 95% at all stations. The spatial distribution of organic matter in surface sediments was greatly divided between the northwestern, central and eastern areas, southern entrance area from the distribution characteristic of their organic matters. The concentrations of almost all items were greater at the northwestern and southern entrance area than at the other areas in Gamak Bay. In particular, sedimentary pollution was very serious at the northwestern area, because the area had an excessive supply of organic matter due to aquaculture activity and the inflow of sewage from the land. These materials stayed longer because of the topographical characteristics of such as basin and the anoxic conditions in the bottom seawater environment caused by thermocline in the summer. The tendency of temporal change was most prominently in the period of high-water temperatures than low-water ones at the northwestern and southern entrance areas. On the other hand, the central and eastern areas did not show a regular trend for changing the concentrations of each item but mainly showed a higher tendency during the low-water temperatures. This was observed for all but AVS concentrations which were higher during the period of high-water temperature at all stations. Especially, the central and eastern areas showed a large temporal increase of AVS concentration during those periods of high-water temperature where the concentration of CODs was in excess of $20mgO_2/g-dry$. The results show that the organic matters in surface sediments in Gamak Bay actually originated from autochthonous organic matters with eight or less in average C/N ratio including the organic matters generated by the use of ocean, rather than terrigenous organic matters. However, the formation of autochthonous organic matter was mainly derived from detritus than living phytoplankton, indicated the results of the POC/phaeopigment ratio. In addition, the CODs/IL ratio results demonstrate that the detritus was the product of artificial activities such as dregs feeding and fecal pellets of farm organisms caused by aquaculture activities rather than the dynamic of natural ocean activities.

  • PDF