• 제목/요약/키워드: loss modulus

검색결과 371건 처리시간 0.027초

점탄성 댐퍼용 아크릴 방진고무의 개발 및 특성시험 (Development and Characteristic Tests of Acrylic Rubber for Viscoelastic Dampers)

  • 박진일;정정교;박해동;김영찬;김두훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.722-727
    • /
    • 2001
  • The dynamic characteristics of Viscoelastic(VE) damper are experimentally studied. An experimental test was carried out to study the effects of frequency on the damping and stiffness of VE damper. Various cyclic loading tests are conducted. A good agreement was achieved between the experimental results and analytical model proposed by Kasai et al. Also the damping of acrylic rubber is compared with that of PNR material. It was concluded that the damping value of acrylic rubber is higher than that of PNR material.

  • PDF

EPM 및 EPDM 고무의 유변학적 특성 (Rheological Properties of EPM end EPDM Rubbers)

  • 김병규;김창기;박찬영
    • Elastomers and Composites
    • /
    • 제25권2호
    • /
    • pp.97-102
    • /
    • 1990
  • 국내에서 생산, 혹은 수입 시판되고 있는 11종류의 EPDM과 1종의 EPM고무에 대한 선형점탄성적 성질을 RDS로 측정하였다. 측정은 $210^{\circ}C$에서 등온적으로 행하였으며. 이들 고무의 복합점도, 저장탄성계수, 손실탄성계수, 손실 tangent 및 완화스팩트럼 data는 고무 블렌딩이나, 복합화과정에서 중요한 자료로 이용될 것으로 믿는다.

  • PDF

Acorn Starch의 유변학적 성질에 관한 연구(III) -Acorn Starch의 유변학적 성질에 미치는 Surcrose 효과를 중심으로- (Study on the Rheological Properties of Acorn Starch(III) -Effect of sucrose on the Rheological Properties of Acorn Starch-)

  • 김남희
    • 유변학
    • /
    • 제10권1호
    • /
    • pp.7-13
    • /
    • 1998
  • 중량 평균 분자량이 1.22$\times$106이고 다분산도가 8.90이며 수분과 아밀로오스 함량이 각각 9.35%, 27%인 도토리 전분에 sucrose를 첨가하여 동적 유변학적 특성에 대한 온도와 농도의존성을 고찰하였다. AS(acorn starch)-sucrose 계의 점도는 전단속도가 증가하면 감 소하는 전단담화 현상을 나타내며 sucrose 농도가 증가할수록 점도가 증가하였고, Casson 식에 의해 얻어진 항복치는 sucrose 농도가 증가하면 증가하였다. 저장영률과 손실영률은 sucrose 농도가 증가하면 단일하게 증가하였고 손실 탄성률은 온도가 증가하면 감소하였다. DSC 측정자료를 zipper model에 적용시켜 본 결과 sucrose 농도가 증가할수록 zipper의 수 와 junc-tion zone의 수는 증가했으며 크기는 감소하였다. Sucrose는 전분과 수소결합을 형 성하여 용액내에서 가소제처럼 거동함을 알수있었다.

  • PDF

Dynamic Rheological Comparison of Selected Gum Solutions

  • Choi, Su-Jin;Chu, So-Young;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.474-477
    • /
    • 2006
  • Dynamic rheological properties of commercial 0.8, 1.0, and 1.2% gums [carboxylmethylcellulose (CMC), guar gum, hydroxypropylmethylcellulose (HPMC), tara gum, and xanthan gum], which can be dissolved in cold water, were investigated by small-deformation oscillatory measurements. Magnitudes of storage (G') and loss (G") moduli increased with increasing concentration of gum solutions except for xanthan gum. Guar gum exhibited greatest G' and G" values among all gums except for G' value at 0.8% concentration. Slopes of G' and G" decreased with increasing concentration of gum solutions except for xanthan gum. Tan ${\delta}$ (G"/G') values decreased with increasing concentration of gum solutions except for xanthan gum. Tan ${\delta}$ values of xanthan gum solutions were much lower than those of other gum solutions, indicating that xanthan gum solutions were predominantly more elastic than viscous.

Experimental study on long-term behavior of prestressed steel I-beam-concrete composite beams

  • Sung, Deokyong;Hong, Seongwon
    • Steel and Composite Structures
    • /
    • 제42권5호
    • /
    • pp.671-683
    • /
    • 2022
  • To investigate and predict the long-term time-dependent behavior, such as creep, shrinkage, and relaxation of PS strands, and prestress loss in prestressed steel-concrete composite beams, named Precom, full-scale tests were conducted and the collected data were compared with those obtained from the two proposed analytical models. The combined effective modulus method (EMM)-empirical model proposed with a flowchart considered the creep effect to determine the prestress loss. Conversely, the age-adjusted effective modulus method (AEMM) with CEB-FIP equation was developed to account for the concrete aging. The results indicated that the AEMM with CEB-FIP model predicts the long-term behavior of Precom effectively.

집중질량 모형화에 의한 점탄성재료의 복소 탄성계수 산출을 위한 시편 크기 의 절정 (Determination of Specimen Geomery for Estimation of the Complex Modulus of Viscoelas the Materials by the Lumped Mass Model)

  • 강기호;심송;김광준
    • 소음진동
    • /
    • 제1권2호
    • /
    • pp.121-128
    • /
    • 1991
  • In order to use viscoelastic materials efficiently for noise and vibration control, or th qualify newly developed materials, knowledge of the Young' s modulus and loss factor is essemtial. These material properties, the so-called complex Young' s modulus, are frequently treated as dynamic charicteristics because of their dependence upon the frequency. Many techniques have been developed and verified for measuring complex Young' s modulus of viscoelastic materials. Among them, the impedance method is preferable in order to obtain the frequency information in detail. In this method, a cylindrical or prismatic specimen is excited into longitudinal harmonic vibration at one end, the other being fixed, and the resulting force is measured at the driving or fixed end. The amplitude ratio of the two signals and phase angle between them are then used to compute the material properties using various mathematical models. In this paper, the impedance method is investigated theoretically and experimentally. A way to determine the specimen geometry which is most appropriate for the identification of complex Young' s modulus using the lumped mass model is presented and discussed. Then experimental results supporting the theoretical predictions are presented.

  • PDF

Life Prediction of Hydraulic Concrete Based on Grey Residual Markov Model

  • Gong, Li;Gong, Xuelei;Liang, Ying;Zhang, Bingzong;Yang, Yiqun
    • Journal of Information Processing Systems
    • /
    • 제18권4호
    • /
    • pp.457-469
    • /
    • 2022
  • Hydraulic concrete buildings in the northwest of China are often subject to the combined effects of low-temperature frost damage, during drying and wetting cycles, and salt erosion, so the study of concrete deterioration prediction is of major importance. The prediction model of the relative dynamic elastic modulus (RDEM) of four different kinds of modified concrete under the special environment in the northwest of China was established using Grey residual Markov theory. Based on the available test data, modified values of the dynamic elastic modulus were obtained based on the Grey GM(1,1) model and the residual GM(1,1) model, combined with the Markov sign correction, and the dynamic elastic modulus of concrete was predicted. The computational analysis showed that the maximum relative error of the corrected dynamic elastic modulus was significantly reduced, from 1.599% to 0.270% for the BS2 group. The analysis error showed that the model was more adjusted to the concrete mixed with fly ash and mineral powder, and its calculation error was significantly lower than that of the rest of the groups. The analysis of the data for each group proved that the model could predict the loss of dynamic elastic modulus of the deterioration of the concrete effectively, as well as the number of cycles when the concrete reached the damaged state.

Elastic modulus of ASR-affected concrete: An evaluation using Artificial Neural Network

  • Nguyen, Thuc Nhu;Yu, Yang;Li, Jianchun;Gowripalan, Nadarajah;Sirivivatnanon, Vute
    • Computers and Concrete
    • /
    • 제24권6호
    • /
    • pp.541-553
    • /
    • 2019
  • Alkali-silica reaction (ASR) in concrete can induce degradation in its mechanical properties, leading to compromised serviceability and even loss in load capacity of concrete structures. Compared to other properties, ASR often affects the modulus of elasticity more significantly. Several empirical models have thus been established to estimate elastic modulus reduction based on the ASR expansion only for condition assessment and capacity evaluation of the distressed structures. However, it has been observed from experimental studies in the literature that for any given level of ASR expansion, there are significant variations on the measured modulus of elasticity. In fact, many other factors, such as cement content, reactive aggregate type, exposure condition, additional alkali and concrete strength, have been commonly known in contribution to changes of concrete elastic modulus due to ASR. In this study, an artificial intelligent model using artificial neural network (ANN) is proposed for the first time to provide an innovative approach for evaluation of the elastic modulus of ASR-affected concrete, which is able to take into account contribution of several influence factors. By intelligently fusing multiple information, the proposed ANN model can provide an accurate estimation of the modulus of elasticity, which shows a significant improvement from empirical based models used in current practice. The results also indicate that expansion due to ASR is not the only factor contributing to the stiffness change, and various factors have to be included during the evaluation.

Effect of temperature on the rheological properties of dental interocclusal recording materials

  • Pae, Ahran;Lee, Ho-Rim;Kim, Hyeong-Seob
    • Korea-Australia Rheology Journal
    • /
    • 제20권4호
    • /
    • pp.221-226
    • /
    • 2008
  • The purpose of this study was to compare rheological properties of six dental interocclusal recording materials and to investigate the effect of temperature on the rheological properties during setting. Five polyvinylsiloxane materials and one polyether material were investigated in this study. The storage modulus (G') and the loss factor ($tan{\delta}$) were measured from 30s after mixing during setting, using the universal dynamic spectrometer. Viscoelastic properties were evaluated by means of G' and $tan{\delta}$ from 5 repeats at $21^{\circ}C$ and $33^{\circ}C$. Individual changes during setting were also evaluated. All data were statistically analyzed using one-way ANOVA and multiple comparison $Scheff{\acute{e}}$ test at the significance level of 0.05. The mean of G was checked at $t_{set}$ (the setting time provided from manufacturer) and $t_{300}$ (the end of experimental time) and the mean of $tan{\delta}$ was checked at to and $t_{set}$. Whereas the increase of the G' value showed generally exponential changes at $21^{\circ}C$, the change of the G' value at $33^{\circ}C$ displayed sigmoidal curves during setting. The change of loss factor $tan{\delta}$ during setting varied. Within the limitations of this study, dental interocclusal recording materials had different viscoelastic properties and most of the materials showed different fluidity at $21^{\circ}C$ and $33^{\circ}C$.

정밀 고분자 광섬유 어레이 제작 연구 (Fabrication of Polymeric Optical Fiber Array)

  • 조상욱;정명영;김창석;안승호
    • 한국정밀공학회지
    • /
    • 제24권5호
    • /
    • pp.82-88
    • /
    • 2007
  • This work is to fabricate a precise optical fiber array using polymer composite for optical interconnection. Optical fiber array has to satisfy low optical loss requirement less than 0.4 dB according to temperature change. For this purpose, design criteria for an optical fiber array was derived. The coefficient of thermal expansion of silica particulate epoxy composites was affected by volume fraction of silica particles. And also, elastic modulus of silica particulate epoxy composites was affected by volume fraction of silica particles. To obtain the coefficients of thermal expansion below $10{\times}10E-6/^{\circ}C$ and elastic modulus more than 20 GPa , we chose the volume fraction more than 76%. Using silica particulate epoxy composites with the volume fraction 76%, 8-channel optical fiber array with dimensional tolerances below $1\;{\mu}m$ was manufactured by transfer molding technique using dies with the uniquely-designed core pin and precisely-machined zirconia ceramic V block. These optical fiber arrays showed optical loss variations within 0.4 dB under thermal cycling test and high temperature test.