• Title/Summary/Keyword: loss coefficient

Search Result 1,195, Processing Time 0.03 seconds

A Study on the Performance Analysis of Butterfly Valve in Water Fire Extinguishing System (수계소화시스템 버터플라이 밸브의 성능해석에 관한 연구)

  • Lee, Dong-Myung
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.91-96
    • /
    • 2007
  • Performance analysis of the butterfly valve in water fire extinguishing has been carried out. Performance analysis of the butterfly valve are investigated for torque characteristics, pressure loss and cavitations. The torque characteristics of disc are corrected for the angles of attack of valve disc by theoretical torque equation, and correction equation is added. The pressure loss coefficient on opening angle of valve has been formulated by applying the Carnot's equations. The torque characteristics, pressure loss and cavitations of the butterfly valve are analyzed for the ratio of disc thickness to the valve diameter. Cavitations are analyzed from the pressure loss coefficient of valve. The analysis of pressure loss and cavitation has been carried out change of the thickness ratio on opening angle of valve. These analysis data are utilize to necessary engineering data to develope of the butterfly valve.

Estimation Iron Loss Coefficients and Iron Loss Calculation of IPMSM According to Core Material (철심 재질에 따른 철손 계수 산정 및 IPMSM의 철손 계산)

  • Kang, Bo-Han;Kim, Yong-Tae;Cho, Gyu-Won;Lee, Jung-Gyu;Jang, Ki-Bong;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1269-1274
    • /
    • 2012
  • In this paper, the iron loss was calculated using estimated iron loss coefficient at 650W Interior Permanent Magnet Synchronous Motor(IPMSM) and 250W IPMSM. The iron loss coefficients was estimated different according to electrical steel material used to stator and rotor core in motor. Aspect of The rotating flux field and alternating flux field was confirmed by magnetic field behavior and harmonic analysis in stator core, the iron loss was calculated using flux density by Finite Element Method(FEM) and estimated coefficients by iron loss coefficient estimation proposed in this paper. The iron loss experiment was performed for verified to iron loss calculation, and the iron loss coefficients were verified by comparison of iron loss calculation value and experimental value.

A Study on the Determination of Prestressing Force Considering Frictional Loss in Prestressed Concrete Structures (프리스트레스 콘크리트 구조물의 마찰손실을 고려한 긴장력 산정에 관한 연구)

  • 조병완;이재형;태기호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.645-650
    • /
    • 2000
  • In the prestressed concrete structures, the effective prestressing force of tendon is basically most important item for structural safety and serviceability. The frictional loss is one of the major items for determinating the effective prestressing force and depend on the construction accuracy of the structures. In this thesis, it will be analyzed and found through measured hydraulic jack pressure, tendon elongation and prestressing control system that the tendancy of apparent curvature friction coefficient, the ratio of jacking force and required prestressing force, the ratio of initial jacking force and required prestressing force and compatibility of specified friction loss coefficient. The specified control limit for curvature friction coefficient of prestressing control system is about 0.25 and wobble friction coefficient 0.005. Thus, the control limit should be modified according to changed vale of friction coefficient.

  • PDF

Acoustic Transmission Loss Measurement of the Exhaust System with TL Tube (TL 튜브를 이용한 소음기의 음향 전달 손실 계측법)

  • 류윤선;김윤석;이성홍
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.770-773
    • /
    • 2004
  • The transmission loss coefficient is very important acoustic property in parallel with absorption and acoustic impedance categorizing the acoustical materials, which can control the acoustical problems. At the same time, the transmission loss coefficient is a key parameter to choose the optimum material for the analysis of acoustical characteristics of material using SEA(Statistical Energy Analysis). In this paper, the acoustic transmission loss measurement system using 4-microphone TL tube is applied to the exhaust system, which is one of the most important acoustic control parameters in a car, based on the idea calculating the full transfer matrix. The theoretical background and measurement system are introduced, and finally the measurement results are verified.

  • PDF

A Study on the Flow Characteristics of a Butterfly Valve in Fire Protection (소화용 버터플라이 밸브의 유동특성에 관한 연구)

  • 이동명;김엽래
    • Fire Science and Engineering
    • /
    • v.16 no.4
    • /
    • pp.59-64
    • /
    • 2002
  • Investigation of flow characteristics on pressure loss and cavitations of the butterfly valve has been carried out. The pressure loss coefficient on opening angle of valve has been formulated by applying the Carnot's equations. Cavitations (such as cavitation Inception, super cavitation inception, cavitation damage inception, choking cavitation) have been predicted from the pressure loss coefficient of valve. The prediction of pressure loss and cavitation has been carried out change of the thickness ratio on opening angle of valve. The prediction data is utilize to necessary engineering data to develope of the butterfly valve.

The Effect of Tip Clearance Height on the Three-Dimensional Flow and Aerodynamic Loss in the Wake Region of a High-Turning Turbine Rotor Cascade (끝틈새가 선회각이 큰 터빈 동익 익렬 후류영역에서의 3차원유동 및 압력손실에 미치는 영향)

  • Kwon, Hyun-Goo;Park, Jin-Jae;Lee, Sang-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.5 s.26
    • /
    • pp.36-42
    • /
    • 2004
  • The effect of tip clearance height on the three-dimensional flow and aerodynamic loss in the wake region of a high-turning turbine rotor cascade has been investigated with a miniature cone-type five-hole probe. Distributions of velocity magnitude, secondary velocity vectors, and total-pressure loss coefficient are presented for three tip gap-to-span ratios of h/s = 0.0, 0.5 and 1.0 percent. The result shows that with the increment of h/s, tip leakage vortex tends to be intensified and aerodynamic loss due to the leakage vortex is increased as well. In the case of h/s = 1.0 percent, aerodynamic loss in the tip-leakage flow region is found dominant in comparison with that in the passage vortex region. With increasing h/s, mass-averaged secondary loss coefficient has a greater portion in the mass-averaged total-pressure loss coefficient.

Study of Voltage Loss on Polymer Electrolyte Membrane Fuel Cell Using Empirical Equation (Empirical Equation을 이용한 고분자전해질 연료전지의 전압 손실에 대한 연구)

  • Kim, Kiseok;Goo, Youngmo;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.789-798
    • /
    • 2018
  • The role of empirical equation to predict the performance of polymer electrolyte membrane fuel cell is important. The activation, ohmic and mass transfer losses were separated in a polarization curve, and the curve fitting according to each region was performed using Kim's model and Hao's model. Changes of each loss were compared according to operation variables of the temperature, pressure, oxygen concentration and membrane thickness. The existing model showed a good fitting convergence, but less fitting accuracy in the separated loss region. A new model using the convergence coefficient was suggested to improve the accuracy of performance prediction of fuel cells of which results were demonstrated.

Estimation of Head Loss Coefficient Empirical Formulas Using Model Experimental Results in a 90° Angle Dividing Channel Junction (90도 각도를 갖는 분기수로에서 모형실험결과를 이용한 손실계수 경험식 산정)

  • Park, Inhwan;Seong, Hoje;Kim, Hyung-Jun;Rhee, Dong Sop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.989-999
    • /
    • 2017
  • In this study, hydraulic experimental studies were conducted to estimate the empirical formulas of loss coefficient, which is necessary to calculate the energy loss occurred in the dividing channel junction of sewer system. The experimental apparatus was consisted of two outflow conduit with a $90^{\circ}$ angle to the inlet conduit, and the pressure and velocity heads are measured to analyze the energy losses in the branch. The measurements of the hydraulic grade line show that the hydraulic grade line was steeply descended at the dividing point due to the head loss, and the decreasing amount of velocity head increased with the increase of flowrate ratio. The head loss exponentially increased in the outlet with larger runoff as the increase of flowrate ratio and Froude number, and the head loss coefficient also increased. On the other hands, the head loss coefficients decreased in the outlet with smaller runoff as the increase of the flowrate ratio and Froude number. Using the experimental results, the empirical formulas of loss coefficient was suggested for each outlet, and the error of empirical formula was 3.91 and 5.19%, respectively. Furthermore, the total head loss coefficient calculated by the two empirical formulas was compared with the experimental results, and the error was 3.62%.

An Estimation of Head Loss Coefficients at Continuous Circular Manhole (연속 맨홀에서의 손실계수 산정)

  • Yoon, Young-Noh;Kim, Jung-Soo;Han, Chyung-Such;Yoon, Sei-Eui
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.731-734
    • /
    • 2008
  • Urban sewer systems are designed to operate in open-channel flow regime and energy loss at circular manholes are usually not significant. However, the energy loss at manholes, often exceeding the friction loss of pipes under surcharge flow, is considered as one of the major causes of inundation in urban area. Therefore, it is necessary to analyze the head loss associated with manholes, especially in surcharge flow. Hydraulic experimental apparatus with two circular manholes was installed for this study. The range of the experimental discharges were from $1.0\ell/sec$ to $4.4\ell/sec$. Head loss coefficient was maximum because of strong oscillation of water surface when the range of manhole depth ratios$(h_m/D_{in})$ were from 1,2 to 1.25. The average head loss coefficients for upstream manhole and downstream manhole were 0.58 and 0.23 respectively. Head loss at upstream manhole is nearly 2.5 times more than one at downstream manhole.

  • PDF

Effect of scratches on optical connector interface surface on the insertion loss (광 커넥터 접합면의 스크래치가 삽입손실에 미치는 영향)

  • 윤영민;윤정현;김부균;신영곤;송국현
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.287-292
    • /
    • 2004
  • This paper presents the effect of scratches on an optical connector interface surface on the insertion loss of optical connectors. We propose a model for calculating the insertion loss of optical connectors. The model is expressed in terms of geometrical parameters of scratches assuming that the transmission coefficient of a light wave on the scratch surfaces is linearly varied as a function of scratch depth. Geometrical parameters of scratches such as location, width, and depth of scratches are measured using 3D optical interferometry surface profiler. We obtain the equation of the transmission coefficient in terms of scratch depth comparing the experimental insertion loss data to the insertion loss data using the model presented in this paper. Using the model and the equation of the transmission coefficient presented in this paper, we present the results of the insertion loss of optical connectors for various geometrical parameters of scratches. Scratches which are located at longer than two times the core radius from the center of the core show negligible effect on the insertion loss of optical connectors.