• 제목/요약/키워드: losipescu Shear Test

검색결과 2건 처리시간 0.014초

Iosipescu Shear Test를 이용한 고분자 복합재료의 종방향 전단계수 연구 (Effective Longitudinal Shear Modulus of Polymeric Composite Using Iosipescu Shear Test)

  • 정태헌;권용수;이유태;이동주
    • 한국산업융합학회 논문집
    • /
    • 제3권1호
    • /
    • pp.61-67
    • /
    • 2000
  • Effective shear modulus of continuous fiber reinforced polymeric composites is measured using a modified Iosipescu Shear Test(IST) and compared with data obtained by finite element analyses that a concept of unit cell is. It is found that the numerical results of the longitudinal shear modulus give a good agreement with experimental data at lower fiber volume fraction. In this paper, both the distance and stress transfer between the fibers are discussed as the major factors.

  • PDF

카본/나일론 복합재료의 냉각속도에 따른 기계적 특성변화 (Effect of Cooling Rate on Mechanical Properties of Carbon/Nylon66 Composites)

  • 홍순곤;변준형;황병선;강범수
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.122-125
    • /
    • 2001
  • The objective of this research is to develop hybridized yarns for thermoplastic composites, and to examine tile effect of cooling rate on mechanical properties of the composites. The co-braided yarn utilizing carbon fibers as reinforcements and Nylon 66 fibers as matrix materials has been fabricated. Thermoplastic composites have been manufactured by the hot-press forming process. For the processing conditions, cooling rates of $-2.5^{\circ}C$/min and $-60^{\circ}C$/min have been considered. Three-point bending test and losipescu shear test were performed to investigate the effect of the cooling rate and the surface treatment of carbon fibers. SEM photographs were used to investigate the fracture surfaces of the tested samples. The cooling rate of $-60^{\circ}C$/min resulted in the higher strength and elastic modulus for bending and shear tests. The composites of the epoxy-sized carbon fibers showed the lowest strength due to the degradation of the sizing material during the thermoforming process.

  • PDF