• Title/Summary/Keyword: looper angle

Search Result 22, Processing Time 0.034 seconds

A Fuzzy Tension Control Method for the Coupled Looper System at the Hot Rolling Process (열연 루퍼시스템의 퍼지 장력제어)

  • Hur, Yone-Gi
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.1006-1012
    • /
    • 2010
  • The hot rolling process ranks the highest position for production in steel making process. The hot strip manufacturing processes consist of the reheating furnace, roughing and finishing mill and coiler. The reheating furnace heats the slab. The roughing and finishing mill produce the hot strip from slab. The hot strip quality mainly depends on finishing mill, which consists of 4-high 7 stands. The looper is installed between stands and is used for controlling the strip tension by the looper angle for better material flow. It is difficult to control the strip tension with the coupled looper system from interaction between the looper angle and strip tension. Too much deviation of strip tension severely affects the poor width quality of the hot strip. It is important to control simultaneously both the looper angle and strip tension with each of their target values. This paper proposes the fuzzy tension control, which is developed to minimize the width deviation of the hot strip by maintaining the proper strip tension between stands and to achieve the stable operation of the coupled looper system. The fuzzy tension control performance is compared with the conventional PID control by experimental results.

Tension Control System for Hot Strip Mills (열간 압연 공정에서의 장력 제어시스템)

  • 박성한;안병준;황이철;홍신표;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.169-169
    • /
    • 2000
  • The modeling for the looper of a hot strip finishing mill to control the tension of the strip is presented. The looper is an arm pushing against the strip between stands in a tandem mill to keep the strip tension constant and to isolate the interactions of the adjacent stands. Tension is influenced by the difference in mass flow through the up stream and down-stream rolling stands. Tension is critical to strip quality, influencing width, gauge, and shape. This paper presents how looper angle and strip tension are controlled for a hot strip finishing mill.

  • PDF

Gain Scheduling for Hot Strip Mill

  • Park, Sung-Han;Ahn, Byoung-Joon;Park, Juy-Yong;Lee, Dong-Wook;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.129.4-129
    • /
    • 2001
  • The looper control of hot strip finishing mill is one of the most important control item in hot strip rolling mill process. Loopers are placed between finishing mill stands and control the mass flow of the two stands. Another important action of the looper is to control the strip tension which influences on the width of the strip. So it is very important to control both the looper angle and the strip tension simultaneously but the looper angle and the strip tension are strongly interacted by each other. There are many control schemes such as conventional, non-interactive, LQ(Linear Quadratic), Hinf and ILQ(Inverse Linear Quadratic), Adaptive(gain scheduling) control in the looper control system. In this paper, we present the modeling for the looper of a hot strip finishing mill to control the tension of the strip and suggest another control method.

  • PDF

TENSION CONTROL SYSTEM FOR HOT STRIP MILLS (열간 압연 공정에서의 장력 제어시스템)

  • Park, Sung-Han;Ahn, Byoung-Joon;Lee, Man-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2267-2269
    • /
    • 2001
  • The looper control of hot strip finishing mill is one of the most important control item in hot strip rolling mill process. Loopers are placed between finishing mill stands and control the mass flow of the two stands. Another important action of the looper is to control the strip tension which influences on the width of the strip. So it is very important to control both the looper angle and the strip tension simultaneously but the looper angle and the strip tension are strongly interacted by each other. There are many control schemes such as conventional, non-interactive, LQ, LQG/LTR, and ILQ control in the looper control system. In this paper, we present the modeling for the looper of a hot strip finishing mill to control the tension of the strip and suggest the non-interactive(cross) and LQG/LTR control method.

  • PDF

Improving the Performance of Hot Rolling Process through Cross Control (Cross Control 기법을 통한 열연 공정의 성능 개선)

  • Jung, Jae-Kyung;Park, Ju-Hyun;Shim, Woo-Chul;Kwon, Oh-Min;Won, Sang-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.561-563
    • /
    • 1999
  • The looper of a hot strip finishing mill is installed between each pair of stands and plays a key role to enhance the product quality of strip by controlling the tension and height of strip in each inter-stand. Though the conventional looper control has achieved the mass products of strip so far, it has difficulties not only tuning gains by means of errors which are caused by coupling effects between strip tension and looper angle both utilizing tension feedback. Therefore, the non-interactive control employing cross controller and tension feedback has been introduced in looper control system in order to overcome the coupling effects existing between tension and looper angle and track the reference tension efficiently. In this paper, we present the cross controllers which play a role to decouple reciprocal effects between tension and looper angle and show better performance.

  • PDF

Gain Scheduling for Tension Control (장력제어를 위한 게인 스케줄링)

  • 이동욱;박성한;안병준;이만형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.505-509
    • /
    • 2002
  • The looper control of hot strip finishing mill is one of the most important control item In hot strip rolling mill process. Loopers are placed between finishing mill stands and control the mass flow of the two stands. Another important action of the looper is to control the strip tension which influences on the width of the strip. So it is very important to control both the looper angle and the strip tension simultaneously but the looper angle and the strip tension are strongly interacted by each other. The gain scheduling is to break the control design process into two steps. First, one designs local linear controllers based on linerizations of the nonlinear system at several different operating conditions. Second, a global nonlinear controller for the nonlinear system is obtained by interpolating.

  • PDF

A Study on the Design of a Looper Strip Controller and its Robustness for Hot Strip Mills Using ILQ Control (역최적제어(ILQ)를 이용한 열간압연시스템의 루퍼 장력제어기 설계 및 견실성 연구)

  • Hwang, I-Cheol;Kim, Seong-Bae
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.93-98
    • /
    • 2001
  • This paper studies on the design of an ILQ(Inverse Linear Quadratic optimal control) looper control system for hot strip mills. The looper which is placed between each stand plays an important role in controlling strip width by regulating strip tension variation generated from the velocity difference of main work rolls. The mathematical model for looper is firstly obtained by Taylor's linearization of nonlinear differential equations, where it is given as a linear and time invariant state-space equation. Secondly, a looper servo controller is designed by ILQ control algorithm, which is an inverse problem of LQ(Linear Quadratic optimal control) control. By tunning control gain arbitration parameters and time constants, it is shown that the ILQ looper servo controller has the performance that makes well to follow desired trajectories of both strip tension and looper angle.

  • PDF

Eigenstructure Assignment for a Looper Control System

  • Lee, Dong-Wook;Ahn, Byoung-Joon;Park, Sung-Han;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.68.3-68
    • /
    • 2001
  • We describe the looper controller design for a hot strip mill. The looper is to control the strip tension which influences on the width of the strip. It is very important to control the looper control of the hot strip mill, but difficult to control the looper, because there exists mutual interaction among strip gauge, looper angle, and strip tension. In this paper, we present the modeling for the looper of a hot strip mill to control the tension of the strip and suggest a eigenstructure assignment method. The eigenstructure assignment is useful tool that allows the designer to satisfy damping, settling time, and mode decoupling specifications directly by choosing eigenvalue and eigenvectors. Desired eigenvalue and eigenvector are chosen to satisfy the desired responses.

  • PDF

The Design of Width Controller by using Looper Tension Control of Finishing Mill in Hot Strip Mill

  • Han, Chang-Soo;Kim, Jeong-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.68.6-68
    • /
    • 2001
  • There is a looper for the safety threading between stands in finishing mill. In this looper system, it is 2 inputs 2 outputs MIMO )Multi Input Multi Output) system, which has two inputs that are the angle of looper and the tension of Strip and has two outputs that are the torque of looper motor and the speed of Mill Motor. In tension controller of looper, it calculates the range of tension variation into the compensation value of speed and outputs to the speed controller of Mill Motor, so that it controls the tension of strip between stands. In this study, using this tension controller of looper, we adjust the establishment value of ...

  • PDF

Tension Control of Hot Strip Finishing Mill (열간 사상압연 공정의 장력제어)

  • 이동욱;안병준;배종일;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.322-325
    • /
    • 2002
  • We describe the looper controller design for a hot strip mill. The looper is to control the strip tension which influences on the width of the strip. It is very important to control the looper control of the hot strip mill, but difficult to control the looper, because there exists on mutual interaction among strip gauge, looper angle, and strip tension. In this paper, we present the modeling for the hot strip finishing mill to control the tension of the strip and suggest a cross control method. The cross control is a very simple method that allows non-interacting control.

  • PDF