• Title/Summary/Keyword: loop-shaping

Search Result 124, Processing Time 0.02 seconds

$H^{\infty}$ Speed Control for Hot Rolling Mill Drives using Mixed Sensitivity Minimization (혼합감도최소화를 이용한 열간압연 구동기에 대한 $H^{\infty}$ 속도제어)

  • Kim, Jong-Hae;Um, Tae-Ho;Park, Hong-Bae;Lee, Sang-Ho;Jeong, Jin-Yang;Lee, Joo-Kang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.134-140
    • /
    • 1998
  • 포항제철 2열연공장의 사상압연에 사용되고 있는 DC 모터를 가지는 열간압연 구동기에 대한 견실 H/sup .inf./ 속도제어기 설계방법을 제안한다. 기존에는 PI 재어기법을 이용하여 속도를 제어하고 있으므로 불확실성과 외란등이 존재할 경우 양호한 제어 성능을 얻기 힘들다. 이를 해결하기 위해 주파수 하중 함수를 가지는 혼합감도최소화 문제를 설정하여 견실성을 보장하는 H/sup .inf./ 속도제어기를 설계한다. 이때 주파수 하중함수는 루프쉐이핑기법을 이용하여 주어진 구동기 플랜트에 적합하도록 선택한다. H/sup .inf./ 속도제어기 설계는 Pasek이 제시한 DC 모터의 모델링 방법에 의해 얻어진 모델을 포함하는 구동기 모델에서 속도제어기 부분을 제외한 모델을 대상으로 한다. 제안한 견실 속도제어기 설계방법은 파라미터 변화나 부하토크 변동 등의 외란에 대하여 폐루프 시스템의 견실안정성과 원하는 속도에 좋은 추적 성능을 보인다. 제어 대상인 포항제철 2열연공장의 열간압연 구동기에 대한 시뮬레이션을 통해 기준속도 추적성, 응답속도, 불확실성과 외란에 대한 견실성 등의 성능에 기존의 PI 속도제어기보다 양호함을 확인함으로써 제안한 견실 H/sup .inf./ 속도제어기 설계 방법의 타당성을 보인다.

  • PDF

Comparison Study of H-infinity Controller Design Algorithms for Spacecraft Attitude Control (인공위성 자세제어를 위한 H-infinity 제어기 설계 알고리즘 비교 연구)

  • Rhee, Seung-Wu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.57-69
    • /
    • 2016
  • There are three kinds of algorithms(2-ARE, mu-synthesis, LMI) for controller design using closed-loop shaping method. This paper provides the summary of background theory of three algorithms and $H_{\infty}$ controller design results for spacecraft attitude control using the three controller design tools of Matlab$^{TM}$ Toolbox for comparison. As a result, it reveals that LMI design method is more reliable as well as easier than others for spacecraft attitude control design. Comparison results are as follow: 2-ARE method and LMI method provide almost same results in robust stability, robust performance and control authority level. But 2-ARE method is more sensitive than LMI method with respect to proper design of weighting functions: 2-ARE method is more difficult than LMI method in weighting function design. The design result of mu-synthesis method shows worse performance and requires bigger control authority than others.

Dynamic Control Allocation for Shaping Spacecraft Attitude Control Command

  • Choi, Yoon-Hyuk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.10-20
    • /
    • 2007
  • For spacecraft attitude control, reaction wheel (RW) steering laws with more than three wheels for three-axis attitude control can be derived by using a control allocation (CA) approach.1-2 The CA technique deals with a problem of distributing a given control demand to available sets of actuators.3-4 There are many references for CA with applications to aerospace systems. For spacecraft, the control torque command for three body-fixed reference frames can be constructed by a combination of multiple wheels, usually four-wheel pyramid sets. Multi-wheel configurations can be exploited to satisfy a body-axis control torque requirement while satisfying objectives such as minimum control energy.1-2 In general, the reaction wheel steering laws determine required torque command for each wheel in the form of matrix pseudo-inverse. In general, the attitude control command is generated in the form of a feedback control. The spacecraft body angular rate measured by gyros is used to estimate angular displacement also.⁵ Combination of the body angular rate and attitude parameters such as quaternion and MRPs(Modified Rodrigues Parameters) is typically used in synthesizing the control command which should be produced by RWs.¹ The attitude sensor signals are usually corrupted by noise; gyros tend to contain errors such as drift and random noise. The attitude determination system can estimate such errors, and provide best true signals for feedback control.⁶ Even if the attitude determination system, for instance, sophisticated algorithm such as the EKF(Extended Kalman Filter) algorithm⁶, can eliminate the errors efficiently, it is quite probable that the control command still contains noise sources. The noise and/or other high frequency components in the control command would cause the wheel speed to change in an undesirable manner. The closed-loop system, governed by the feedback control law, is also directly affected by the noise due to imperfect sensor characteristics. The noise components in the sensor signal should be mitigated so that the control command is isolated from the noise effect. This can be done by adding a filter to the sensor output or preventing rapid change in the control command. Dynamic control allocation(DCA), recently studied by Härkegård, is to distribute the control command in the sense of dynamics⁴: the allocation is made over a certain time interval, not a fixed time instant. The dynamic behavior of the control command is taken into account in the course of distributing the control command. Not only the control command requirement, but also variation of the control command over a sampling interval is included in the performance criterion to be optimized. The result is a control command in the form of a finite difference equation over the given time interval.⁴ It results in a filter dynamics by taking the previous control command into account for the synthesis of current control command. Stability of the proposed dynamic control allocation (CA) approach was proved to ensure the control command is bounded at the steady-state. In this study, we extended the results presented in Ref. 4 by adding a two-step dynamic CA term in deriving the control allocation law. Also, the strict equality constraint, between the virtual and actual control inputs, is relaxed in order to construct control command with a smooth profile. The proposed DCA technique is applied to a spacecraft attitude control problem. The sensor noise and/or irregular signals, which are existent in most of spacecraft attitude sensors, can be handled effectively by the proposed approach.

Design of a 26ps, 8bit Gated-Ring Oscillator Time-to-Digital Converter using Vernier Delay Line (버니어 지연단을 이용한 26ps, 8비트 게이티드 링 오실레이터 시간-디지털 변환기의 설계)

  • Jin, Hyun-Bae;Park, Hyung-Min;Kim, Tae-Ho;Kang, Jin-Ku
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.2
    • /
    • pp.7-13
    • /
    • 2011
  • This paper presents a Time-to-Digital Converter which is a key block of an All-Digital Phase Locked Loop. In this work, a Vernier Delay Line is added in a conventional Gated Ring Oscillator, so it could get multi-phases and a high resolution. The Gated Ring Oscillator uses 7 unit delay cell, the Vernier Delay Line is used each delay cell. So proposed Time-to-Digital Converter uses total 21 phases. This Time-to-Digital Converter circuit is designed and laid out in $0.13{\mu}m$ 1P-6M CMOS technology. The proposed Time-to-Digital Converter achieves 26ps resolution, maximum input signal frequency is 100MHz and the digital output of proposed Time-to-Digital Converter are 8-bits. The proposed TDC detect 5ns phase difference between Start and Stop signal. A power consumption is 8.4~12.7mW depending on Enable signal width.