• Title/Summary/Keyword: loop gain

Search Result 638, Processing Time 0.031 seconds

A Wideband Clock Generator Design using Improved Automatic Frequency Calibration Circuit (개선된 자동 주파수 보정회로를 이용한 광대역 클록 발생기 설계)

  • Jeong, Sang-Hun;Yoo, Nam-Hee;Cho, Seong-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.451-454
    • /
    • 2011
  • In this paper, a wideband clock generator using novel Automatic frequency calibration(AFC) scheme is proposed. Wideband clock generator using AFC has the advantage of small VCO gain and wide frequency band. The conventional AFC compares whether the feedback frequency is faster or slower then the reference frequency. However, the proposed AFC can detect frequency difference between reference frequency with feedback frequency. So it can be reduced an operation time than conventional methods AFC. Conventional AFC goes to the initial code if the frequency step changed. This AFC, on the other hand, can a prior state code so it can approach a fast operation. In simulation results, the proposed clock generator is designed for DisplayPort using the CMOS ring-VCO. The VCO tuning range is 350MHz, and a VCO frequency is 270MHz. The lock time of clock generator is less then 3us at input reference frequency, 67.5MHz. The phase noise is -109dBC/Hz at 1MHz offset from the center frequency. and power consumption is 10.1mW at 1.8V supply and layout area is $0.384mm^2$.

Modeling and Design of Average Current Mode Control (평균전류모드제어를 이용하는 컨버터의 모델링 및 설계)

  • Jung Young-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.347-355
    • /
    • 2005
  • In this paper, a new continuous~time small signal model of an average current mode control is proposed. Sampling effect Is considered to obtain the proposed small signal model. By the proposed model, the high frequency response characteristics of current loop gain might be predicted accurately compared to previous models. And this leads the prediction of inductor current response of the proposed model to be accurate compared to others. In order to show the usefulness of the proposed model, prediction results of the proposed model are compared to those of the circuit level simulator, PSIM and experiment.

High Performance Control of IPMSM using AIPI Controller (AIPI 제어기를 이용한 IPMSM의 고성능 제어)

  • Kim, Do-Yeon;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.225-227
    • /
    • 2009
  • The conventional fixed gain PI controller is very sensitive to step change of command speed, parameter variation and load disturbances. The precise speed control of interior permanent magnet synchronous motor(IPMSM) drive becomes a complex issue due to nonlinear coupling among its winding currents and the rotor speed as well as the nonlinear electromagnetic developed torque. Therefore, there exists a need to tune the PI controller parameters on-line to ensure optimum drive performance over a wide range of operating conditions. This paper is proposed artificial intelligent-PI(AIPI) controller of IPMSM drive using adaptive learning mechanism(ALM) and fuzzy neural network(FNN). The proposed controller is developed to ensure accurate speed control of IPMSM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. The PI controller parameters are optimized by ALM-FNN at all possible operating condition in a closed loop vector control scheme. The validity of the proposed controller is verified by results at different dynamic operating conditions.

  • PDF

HIPI Controller of IPMSM Drive using ALM-FNN Control (적응학습 퍼지뉴로 제어를 이용한 IPMSM 드라이브의 HIPI 제어기)

  • Kim, Do-Yeon;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.420-423
    • /
    • 2009
  • The conventional fixed gain PI controller is very sensitive to step change of command speed, parameter variation and load disturbances. The precise speed control of interior permanent magnet synchronous motor(IPMSM) drive becomes a complex issue due to nonlinear coupling among its winding currents and the rotor speed as well as the nonlinear electromagnetic developed torque. Therefore, there exists a need to tune the PI controller parameters on-line to ensure optimum drive performance over a wide range of operating conditions. This paper is proposed hybrid intelligent-PI(HIPI) controller of IPMSM drive using adaptive learning mechanism(ALM) and fuzzy neural network(FNN). The proposed controller is developed to ensure accurate speed control of IPMSM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. The PI controller parameters are optimized by ALM-FNN at all possible operating condition in a closed loop vector control scheme. The validity of the proposed controller is verified by results at different dynamic operating conditions.

  • PDF

A High Frequency Op-amp for High Speed Signal Processing (고속신호처리를 위한 고주파용 Op-Amp 설계)

  • 신건순
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.1
    • /
    • pp.25-29
    • /
    • 2002
  • There is an increasing interest in high-speed signal processing in modern telecommunication and SC circuit, HDTV, ISDN. There are many methods of high-speed signal processing. This paper describes a design approach for the realization of high-frequency Op-amp in CMOS technology. A limiting factor in Op-amp based analog integrated circuits is the limited useful frequency range. this thesis will develop a CMOS op-amp architecture with improved gainband width product with this technique an op-amp will achieve up to 170MHz (CL=2pF) unity-gain frequency with a 1.2-micron design rule. This CMOS op-amp is particularly suitable for achieving wide and stable closed-loop band widths, such as required in high-frequency SC filters, high-speed analog circuits.

Robust Optimal Nonlinear Control with Observer for Position Tracking of Permanent Magnet Synchronous Motors

  • Ha, Dong-Hyun;Lim, Chang-Soon;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.975-984
    • /
    • 2013
  • This paper proposes a robust optimal nonlinear control with an observer to reject the offset errors of position tracking for surface mounted permanent magnet synchronous motors. We provide the control method to reject offset errors and load torque for designing field oriented control (FOC) based the alternating current (AC) frame. The proposed method consists of a torque generator, a commutation scheme, an electrical controller, and a load torque observer. The mechanical controller is designed to compensate for load torque and the offset error and generate the desired torque. The commutation scheme is proposed to create the desired currents for the desired torque. The electrical controller is developed to guarantee the desired currents. The observer is designed to estimate both the velocity and the load torque. In order to obtain the robustness to parameter uncertainties and a gain tuning guide, the linear quadratic regulator method is applied to the proposed method. The closed-loop stability is proven. A detailed process for the FOC design and an analysis of the control methods based on the AC frame are presented. The performance of the proposed method was validated via experiments. The proposed method obtains the FOC based on the AC frame. Furthermore, the position tracking performance of the proposed method is superior to that of the conventional method.

Practical Design Methodology of Dual Active Bridge Converter as Isolated Bi-directional DC-DC Converter for Solid State Transformer (Solid State Transformer를 위한 양방향 Dual Active Bridge DC-DC 컨버터의 설계 기법)

  • Choi, Hyun-Jun;Lee, Won-Bin;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.102-108
    • /
    • 2017
  • Proper design guides are proposed for a practical dual-active bridge (DAB) converter based on the mathematical model on the steady state. The DAB converter is popular in bidirectional application due to its zero-voltage capability and easy bidirectional operation for seamless control, high efficiency, and performance. Some design considerations are taken to overcome the limitation of the DAB converter. The practical design methodology of power stage is discussed to minimize the conduction and switching losses of the DAB converter. Small-signal model and frequency response are derived and analyzed based on the generalized average method, which considers equivalent series resistance, to improve the dynamics, stability, and reliability with voltage regulation of the practical DAB converter. The design of closed-loop control is discussed by the derived small-signal model to obtain the pertinent gain and phase margin in steady-state operation. Experimental results of a 3.3 kW prototype of DAB converter demonstrate the validity and effectiveness of the proposed methods.

Active Frequency Drift Positive Feedback Method for Anti-islanding (단독운전검출을 위한 능동적 주파수 변화 정궤환기법)

  • So, J.H.;Jung, Y.S.;Yu, G.J.;Yu, B.G.;Lee, K.O.;Choi, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1684-1686
    • /
    • 2005
  • As photovoltaic(PV) power generation systems become more common, it will be necessary to investigate islanding detection method for PV systems. Islanding of PV systems can cause a variety of problems and must be prevented. However, if the real and reactive power of load and PV system are closely matched, islanding detection by passive methods becomes difficult. Also, most active methods lose effectiveness when there are several PV systems feeding the same island. The active frequency drift positive feedback method(AFDPF) enables islanding detection by forcing the frequency of the voltage in the island to drift up or down. In this paper the research for the minimum value of chopping fraction gain applied digital phase-locked-loop(DPLL) to AFDPF considering output power quality and islanding prevention performance are performed by simulation and experiment in IEEE Std 929-2000 islanding test.

  • PDF

Decentralized Fuzzy Output Feedback Controller for Nonlinear Interconnected System with Time Delay (시간 지연이 있는 비선형 상호 결합 시스템의 분산 퍼지 출력 궤환 제어기 설계)

  • Koo, Geun-Bum;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.335-340
    • /
    • 2008
  • In this paper, a decentralized fuzzy output feedback controller for nonlinear interconnected systems with time delay is proposed. The nonlinear interconnected system is represented to fuzzy system using Takagi-Sugeno (T-S) fuzzy model. The decentralized output feedback controller is designed(or stability of subsystems of the fuzzy interconnected system. The stable condition of the closed-loop subsystem is represented to the linear matrix inequality (LMI) form and control gain is obtained by LMI. An example is given to show the verification discussed throughout the paper.

A Study on 800 MHz 1W Cartesian Feedback Linearized Power Amplifier for TETRA Signals (TETRA 신호를 위한 800 MHz 대역 1W 급 Cartesian feedback 선형 전력 증폭기에 관한 연구)

  • Oh, Duk-Soo;Kim, Ji-Yeon;Chun, Sang-Hyun;Kim, Jong-Heon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.4
    • /
    • pp.76-85
    • /
    • 2008
  • In this paper, a 800 MHz 1 W cartesian feedback linearized power amplifier is designed and fabricated for TETRA handset application. For amplification of TETRA signal with 200 kHz narrow bandwidth, amplifier linearization performance of more than 30 dBc is improved through the cartesian feedback linearizer at the offset Sequency of ${\pm}25$ kHz. It is clear that the linearization performance is affected by imbalance of gain and phase between I/Q signals and also DC offset. The linearization performance can be maximized by the compensation of those influences. Cartesian feedback is suitable for a liearization technique of narrow band signal with QAM and another modulation signals, as well.

  • PDF