• Title/Summary/Keyword: longwave radiation

Search Result 52, Processing Time 0.024 seconds

Parameters Estimation in Longwave Radiation Formula (장파복사 모형의 매개변수 추정)

  • Cho, Hongyeon;Lee, Khil-Ha;Lee, Jungmi
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.2
    • /
    • pp.239-246
    • /
    • 2012
  • Daily net radiation is essential for heat budget analysis for environmental impact assessment in the coastal zone and longwave radiation is an important element of net radiation because there is a significant exchange of radiant energy between the earth's surface and the atmosphere in the form of radiation at longer wavelengths. However, radiation data is not commonly available, and there has been no direct measurement for most areas where coastal environmental impact assessment is usually most needed. Often an empirical equation, e.g., Penman and FAO-24 formulae is used to estimate longwave radiation using temperature, humidity, and sunshine hour data but local calibration may be needed. In this study, local recalibration was performed to have best fit from a widely used longwave equation using the measured longwave radiation data in Korea Global Atmospheric Watch Center (KGAWC). The results shows recalibration can provided better performance AE=0.23($W/m^2$) and RMSE=14.73($W/m^2$). This study will contribute to improve the accuracy of the heat budget analysis in the coastal area.

Surface Energy Balance at Sejong Station, King George Island, Antarctica (남극 세종기지의 에너지 평형)

  • Kim, Jhoon;Cho, Hi Ku;Jung, Yeon Jin;Lee, Yun Gon;Lee, Bang Yong
    • Atmosphere
    • /
    • v.16 no.2
    • /
    • pp.111-124
    • /
    • 2006
  • This study examines seasonal variability of the surface energy balance at the King Sejong Station, Antarctica, using measurements and estimates of the components related to the balance for the period of 1996 to 2004. Annual average of downward shortwave radiation at the surface is 81 $Wm^{-2}$ which is 37% of the extraterrestrial value, with the monthly maximum of 188 $Wm^{-2}$ in December and the minimum of 8 $Wm^{-2}$ in June. These values are relatively smaller than those at other stations in Antarctica, which can be attributed to higher cloudy weather conditions in Antarctic front zone. Surface albedo varies between ~0.3 in the austral summer season and ~0.6 in the winter season. As a result, the net shortwave radiation ranges from 117 $Wm^{-2}$ down to 3 $Wm^{-2}$ with annual averages of 43 $Wm^{-2}$. Annual average of the downward longwave radiation shows 278 $Wm^{-2}$, ranging from 263 $Wm^{-2}$ in August to 298 $Wm^{-2}$ in January. The downward longwave radiation is verified to be dependent strongly on the air temperature and specific humidity, accounting for 74% and 79% of the total variance in the longwave radiation, respectively. The net longwave radiation varies between 25 $Wm^{-2}$ and 40 $Wm^{-2}$ with the annual averages of 30 $Wm^{-2}$. Accordingly, the annual average energy balance is dominated by radiative warming of a positive net all-wave radiation from September to next March and radiative cooling of a negative net all-wave radiation from April to August. The net all-wave radiative energy gain and loss at the surface is mostly balanced by turbulent flux of sensible and latent heat. The soil heat flux is of negligible importance in the surface energy balance.

Change of Temperature using the Twentieth Century Reanalysis Data (20CR) on Antarctica (20세기 재분석 자료(20CR)를 이용한 남극대륙의 기온 변화)

  • Zo, Il-Sung;Jee, Joon-Bum;Lee, Kyu-Tae;Chae, Na-My;Yoon, Young-Jun
    • Ocean and Polar Research
    • /
    • v.34 no.1
    • /
    • pp.73-83
    • /
    • 2012
  • Antarctica is very sensitive to climate change but the number of stations is not sufficient to accurately analyze climate change in this regoin. Model reanalysis data supplements the lack of observation and can be used as long term data to verify climate change. In this study, the 20CR (Twentieth Century Reanalysis) Project data from NCEP/NCAR and monthly mean data (temperature, solar radiation and longwave radiation) from 1871 to 2008, was used to analyze the temperature trend and change in radiation. The 20CR data was used to validate the observation data from Antarctica since 1950 and the correlation coefficients between these data were determined to be over 0.95 at all stations. The temperature increased by approximately $0.23^{\circ}C$/decade during the study period and over $0.20^{\circ}C$/decade over all of the months. This increasing trend was observed throughout the Antarctica and a slight increase was observed in the Antarctic Peninsula. In addition, solar radiation (surface) and longwave radiation (surface and top of atmosphere) trends correlated with the increase in temperature. As a result, outgoing longwave radiation at the surface is attenuated by atmospheric water vapor or clouds and radiation at the top of the atmosphere was reduced. In addition, the absorbed energy in the atmosphere increases the temperature of the atmosphere and surface, and then the heated surface emits more longwave radiation. Eventually these processes are repeated in a positive feedback loop, which results in a continuous rise in temperature.

Infrared Image Simulation for Estimating the Effectiveness of Camouflage Measures (표적은폐도구의 유용도 평가를 위한 적외선화상 모사)

  • Jung, Jinsoo;Kauh, S. Ken;Yoo, Hoseon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.1010-1021
    • /
    • 1999
  • Camouflage measures in military purpose utilize the apparent temperature difference between target and background, so it is essential to develop a thermal analysis program for apparent temperature predictions and to apply some camouflage measures to real military targets for camouflage purpose. In this study, a thermal analysis program including conduction, convection and radiation is developed and the validity of radiation heat transfer terms is examined. The results show that longwave radiation along with solar radiation should be included in order to predict the apparent temperature as well as the physical temperature precisely. Longwave emissivity variation as an effective camouflage measures is applied to a real M2 tank. From the simulation results, it is found that an effective surface treatment, such as painting of a less emissive material or camouflage clothing, may provide a temperature similarity or a spatial similarity, resulting in an effective camouflage.

Parameterization for Longwave Scattering Properties of Ice Clouds with Various Habits and Size Distribution for Use in Atmospheric Models

  • Jee, Joon-Bum;Lee, Kyu-Tae
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.39-45
    • /
    • 2013
  • A parameterization for the scattering of longwave radiation by ice clouds has been developed based on spectral scattering property calculations with shapes and sizes of ice crystals. For this parameterization, the size distribution data by Fu (1996) and by Michell and Arnott (1994) are used. The shapes of ice crystal considered in this study are plate, solid column, hollow column, bullet-rosette, droxtal, aggregate, and spheroid. The properties of longwave scattering by ice crystals are presented as a function of the extinction coefficient, single-scattering albedo, and asymmetry factor. The heating rate and flux by the radiative parameterization model are calculated for wide range of ice crystal sizes, shapes, and optical thickness. The results are compared with the calculated results using a six-stream discrete ordinate scattering algorithm and Chou's method. The new method (with various habits and size distributions) provides a good simulation of the scattering properties and cooling rate in optically thin clouds (optical thickness < 5). Depending on the inclusion of scattering by ice clouds, the errors in the calculation of the cooling rates are significantly different.

An Improved Estimation of Outgoing Longwave Radiation Based on Geostationary Satellite

  • Kim, Hyunji;Seo, Minji;Seong, Noh-hun;Lee, Kyeong-sang;Choi, Sungwon;Jin, Donghyun;Huh, Morang;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.195-201
    • /
    • 2019
  • The Outgoing Longwave Radiation (OLR) is an important satellite-driven variable for understanding the Earth's energy budget balance. The geostationary OLR retrievals require angular and spectral integration using an empirical equation for irradiance flux-to-OLR from a regression analysis, which determines the accuracy of the narrowband satellite-based OLR. We selected homogeneous pixels which is satisfied less temporal-spatial variability of cloud, on three infrared channels (6.7, 10.8, $12.0{\mu}m$) of the first multipurpose geostationary satellite in Korea, namely the Communication, Ocean and Meteorological Satellite/Meteorological Imager (COMS/MI). Multiple regression analysis was performed to retrieve OLR with improved accuracy using selected parameters based on theoretical and physical significance. This algorithm yielded retrieval with higher accuracy than broadband-based OLR retrieval: RMSE of 10.54 to $3.81W\;m^{-2}$, and bias of -8.49 to $-0.07W\;m^{-2}$.

Analysis of Passive Cooling Effect of the Tree by Field Observations in the Summer (하절기 단일 수목의 열 환경 관측을 통한 서열완화 효과 해석)

  • Choi, Dong-Ho;Lee, By-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.109-118
    • /
    • 2006
  • The tree is regarded as an sustainable architectural outdoor design element which reduce urban heat island effect by its solar shading and evapotranspiration. This study carried out field observations of measuring thermal environment of selected tree and its ambience to determine passive cooling effects. Results from the field observations are as below; Tree-shading effect to the thermal environment can not be properly evaluated by merely measuring air temperature differences between tree-shaded space and unshaded space for the maximum temperature difference is less than $1.5^{\circ}C$. The differences of longwave radiation and shortwave radiation between tree-shaded space and unshaded space are measured. Shortwave radiation is considered as a main thermal comfort determining factor for the difference of the shortwave radiation is much bigger than that of longwave radiation. By thermal infrared image analysis, the surface temperature of the tree under strong solar radiation is measured same as ambient air temperature. By which the evapotranspiration is considered to retard tree surface temperature raising effectively.

Introduction of Japanese Ocean Flux data sets with Use of Remote sensing Observations (J-OFURO)

  • Kubota, Masahisa
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.231-236
    • /
    • 1999
  • Accurate ocean surface fluxes with high resolution are critical for understanding a mechanism of global climate. However, it is difficult to derive those fluxes by using ocean observation data because the number of ocean observation data is extremely small and the distribution is inhomogeneous. On the other hand. satellite data are characterized by the high density, the high resolution and the homogeneity. Therefore, it can be considered that we obtain accurate ocean surface by using satellite data. Recently we constructed ocean surface data sets mainly using satellite data. The data set is named by Japanese Ocean Flux data sets with Use of Remote sensing Observations (J-OFURO). Here, we introduce J-OFURO. The data set includes shortwave radiation, longwave radiation, latent heat flux, sensible heat flux, and momentum flux etc. Moreover, sea surface dynamic topography data are included in the data set. Radiation data sets covers western Pacific and eastern Indian Ocean because we use a Japanese geostationally satellite (GMS) to estimate radiation fluxes. On the other hand, turbulent heat fluxes are globally estimated. The constructed data sets are used and shows the effectiveness for many scientific studies.

  • PDF

Prediction of the Apparent Temperature of an Object under the Infrared Waveband (적외선 파장대에서의 물체의 겉보기온도 예측)

  • Jung, Jinsoo;Kauh, S. Ken;Yoo, Hoseon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.352-363
    • /
    • 1999
  • Target detection by the infrared imager depends on the apparent temperature difference between the target and the background, so it is essential to predict apparent temperature variations for this purpose. In this study, thermal analysis program Including conduction, convection and radiation is developed and applied to a representative geometry adequate for examining the apparent temperature characteristics. The results show that the longwave emissivity in association with the background temperature affects the apparent temperature strongly but does not affect the physical temperature. It is revealed that the background temperature plays a role of tuning the apparent temperature. As the longwave emissivity decreases, the apparent temperature decreases when the target is hotter than the background, whereas it increases in the reversed situation. These findings imply that an effective surface treatment, such as painting of a less emissive material, may provide a less detection probability and contribute to preventing the target from being detected at night.

Assessment of Outgoing Longwave Radiation using COMS : Cheongmi and Sulma Catchments (천리안 위성을 사용한 방출장파복사량 검증 : 청미천, 설마천)

  • Baek, Jong Jin;Sur, Chanyang;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.5
    • /
    • pp.465-476
    • /
    • 2013
  • The outgoing longwave radiation (Rlu) for estimation of evapotranspiration is essential to understand energy balance of earth. However, the ground measurement based Rlu has a limitation that the observation can just stand for the exact site, not for an area. In this study, remote sensing technique is adopted to compensate the limitation of ground observation using the geostationary satellite. We calculated Rlu using Communication, Ocean and Meteorological Satellite (COMS). We validated Rlu from COMS with Cheongmicheon (CFK) and Sulmacheon (SMK) flux tower observations controlled by Hydrological Survey Center. The results showed that Rlu from COMS represented reasonable correlation with ground based measurement. Based on the results in this study, COMS will be able to be used for estimation of evapotranspiration.