• Title/Summary/Keyword: longitudinal shear capacity

Search Result 112, Processing Time 0.021 seconds

Bond-slip constitutive model of concrete to cement-asphalt mortar interface for slab track structure

  • Su, Miao;Dai, Gonglian;Peng, Hui
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.589-600
    • /
    • 2020
  • The bonding interface of the concrete slab track and cement-asphalt mortar layer plays an important role in transferring load and restraining the track slab's deformation for slab track structures without concrete bollards in high-speed railway. However, the interfacial bond-slip behavior is seldom considered in the structural analysis; no credible constitutive model has been presented until now. Elaborating the field tests of concrete to cement-asphalt mortar interface subjected to longitudinal and transverse shear loads, this paper revealed its bond capacity and failure characteristics. Interfacial fractures all happen on the contact surface of the concrete track slab and mortar-layer in the experiments. Aiming at this failure mechanism, an interfacial mechanical model that employed the bilinear local bond-slip law was established. Then, the interfacial shear stresses of different loading stages and the load-displacement response were derived. By ensuring that the theoretical load-displacement curve is consistent with the experiment result, an interfacial bond-slip constitutive model including its the corresponding parameters was proposed in this paper. Additionally, a finite element model was used to validate this constitutive model further. The constitutive model presented in this paper can be used to describe the real interfacial bonding effect of slab track structures with similar materials under shear loads.

Seismic Performance of High-Stringth RC Short Columns Confined in Rectangular Steel Tube (강관구속 고강도 철근콘크리트 기둥의 내진성능)

  • 한병찬
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.182-190
    • /
    • 1997
  • A new method to prevent reinforced concrete columns from brittle failure. The method is called transversely reinforcing method in which only the critical regions are confined in steel tube. The steel tubes can change the failure mode of the latter columns from the shear to the flexure. The steel tubes also increase the compressive strength, shear strength and deformation capacity of the infilled concrete. The following conclusions are reached on bases of the study on the seismic performance of the high-strength RC rectangualr short columns confined in steel tube with shear span tho depth ratio of 2.0 The brittle shear failure of high-strength reinforced concrete short columns with large amount of longitudinal bars, which cannot prevented by using the maximum amount of welded hoops, can be prevented by using the steel tube which confines all the maximum amount of welded hoops, can be prevented by using the steel tube which confines all the concrete inclusive of cover concrete. High-strength RC short columns confined in rectangular steel tube provided excellent enhancement of seismic performance but, found that plastic buckling of the steel tube in the hinge regions tended to occur when the columns were subjected to large cyclic lateral displacements. In order to prevent the plastic buckling when the columns lies on large on cyclic lateral displacements, the steel ribs were used for columns. Tests have established that the columns provide excellent enhancement of seismic performance of inadequately confined columns.

  • PDF

Ductility of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete beams: Experimental investigation

  • Kim, Sang Hun;Aboutaha, Riyad S.
    • Steel and Composite Structures
    • /
    • v.4 no.5
    • /
    • pp.333-353
    • /
    • 2004
  • Strength of reinforced concrete beams can easily be increased by the use of externally bonded CFRP composites. However, the mode of failure of CFRP strengthened beam is usually brittle due to tension-shear failure in the concrete substrate or bond failure near the CFRP-Concrete interface. In order to improve the ductility of CFRP strengthened concrete beams, critical variables need to be investigated. This experimental and analytical research focused on a series of reinforced concrete beams strengthened with CFRP composites to enhance the flexural capacity and ductility. The main variables were the amount of CFRP composites, the amount of longitudinal and shear reinforcement, and the effect of CFRP end diagonal anchorage system. Sixteen full-scale beams were investigated. A new design guideline was proposed according to the effects of the above-mentioned variables. The experimental and analytical results were found to be in good agreement.

Behavior of SFRC interior beam-column joints under cyclic loading

  • Khalaf, Noor Ayaad;Qissab, Musab Aied
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.3
    • /
    • pp.167-193
    • /
    • 2020
  • In this paper, the behavior of interior steel fiber reinforced concrete beam - column joints (BCJs) under cyclic loading is investigated. An experimental program including tests on twelve reinforced concrete (BCJs) specimens under cyclic loading was carried out. The test specimens are divided into two groups having different geometry: group (G1) (symmetrical BCJs specimens) and group (G2) (nonsymmetrical BCJs specimens). The parameters considered in this study are the steel fibers (SFs) content by volume of concrete (Vf), the spacing of shear reinforcement at the joint region, and the area of longitudinal flexural reinforcement. Test results show that the addition of 0.5% SFs with stirrups spacing S=Smax has effectively enhanced the overall performance of BCJs with respect to energy dissipation, ductility ratio, spreading and width of cracks. The failure of specimens is governed mainly by the formation of a plastic hinge at the face column and outside the beam-column junction. Secondary shear cracks were also observed in the beam-column junctions.

Behavior of strengthened reinforced concrete coupling beams by bolted steel plates, Part 2: Evaluation of theoretical strength

  • Zhu, Y.;Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.5
    • /
    • pp.563-580
    • /
    • 2010
  • Composite beams using bolts to attach steel plates to the side faces of existing reinforced concrete (RC) coupling beams can enhance both their strength and deformability. The behavior of those composite beams differs substantially from the behavior of typical composite beams made up of steel beams and concrete slabs. The former are subjected to longitudinal, vertical and rotational slips, while the latter only involve longitudinal slip. In this study, a mixed analysis method was adopted to develop the fundamental equations for accurate prediction of the load-carrying capacity of steel plate strengthened RC coupling beams. Then, a rigid plastic analysis technique was used to cope with the full composite effect of the bolt group connections. Two theoretical models for the determination of the strength of medium-length plate strengthened coupling beams based on mixed analysis and rigid plastic methods are presented. The strength of the strengthened coupling beams is derived. The vertical and longitudinal slips of the steel plates and the shear strength of the anchor-bolt connection group is considered. The theoretical models are validated by the available experimental results presented in a companion paper. The strength of the specimens predicted from the mixed analysis model is found to be in good agreement with that from the experimental results.

The Strain of Transverse Steel and Concrete Shear Resistance Degradation after Yielding of Reinforced Concrete Circular Pier (철근콘크리트 원형 교각의 횡방향철근 변형률과 항복이후 콘크리트 전단저항 저감)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.147-157
    • /
    • 2018
  • The basis of capacity design has been explicitly or implicitly regulated in most bridge design specifications. It is to guarantee ductile failure of entire bridge system by preventing brittle failure of pier members and any other structural members until the columns provides fully enough plastic rotation capacity. Brittle shear is regarded as a mode of failure that should be avoided in reinforced concrete bridge pier design. To provide ductility behavior of column, the one of important factors is that flexural hinge of column must be detailed to ensure adequate and dependable shear strength and deformation capacity. Eight small scale circular reinforced concrete columns were tested under cyclic lateral load with 4.5 aspect ratio. The test variables are longitudinal steel ratio, transverse steel ratio, and axial load ratio. Eight flexurally dominated columns were tested. In all specimens, initial flexural-shear cracks occurred at 1.5% drift ratio. The multiple flexural-shear crack width and length gradually increased until the final stage. The angles of the major inclined cracks measured from the vertical column axis ranged between 42 and 48 degrees. In particular, this study focused on assessing transverse reinforcement contribution to the column shear strength. Transverse reinforcement contribution measured during test. Each three components of transverse reinforcement contribution, axial force contribution and concrete contribution were investigated and compared. It was assessed that the concrete stresses of all specimen were larger than stress limit of Korea Bridge Design Specifications.

A Study on the Shear Behavior of Reinforced High Strength Lightweight Concrete Beams (경량고강도 콘크리트보의 전단거동에 관한 연구)

  • 신종률;권우현;권기혁;곽윤근;노희일
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.4
    • /
    • pp.149-159
    • /
    • 1996
  • Recent advances in material technology has accelerated the development of higher strength concretes using lightweight manufactured aggregates.Concretes with these chnractcristics are designable since the reductiun of dead loads and the increase in load capacity can oflix substantial cost reductions. Alt,hough thesc rharackristics are very desirable, very little information is availablc to the structural rivic;~~,cher about the properties of highstrength lightweight concrete. In general, shear strength of reinforced concrete beams is dependent on the compressive strength of concrete. the longitudinal steel ratio, the shear span to the depth ratio and shear reinforcement. In this study. eight single reinforced high strength lightweight concrete beams were tested to investigate their behavior and to determine their ultimate shear strengths.The variables studied in this investigation are shear span to effective depth ratio a/d = 1.5. 2.5, 3.5 and 4.5 : vertical shear reinforcement ratio ${\rho}_8= 0%$ and 1.136%. Test results were analyzed and compared with strengths predicted by ACI code equation. Zsutty's equation. As the results, ACI Eq.(ll-3) and ACI Eq.(ll-6) are conservative for high strength lightweight concrete beam. Also Zsuttyrs Eq. is conservative for beams except short beams. (a/d= 1.5)

A study on the ductile capacity of Reinforced concrete beam-column joint subjected to cyclic load (반복하중을 받는 철근콘크리트 보-기둥 접합부 연성능력에 대한 연구)

  • Park, Jong-Wook;Woo, Jae-Hyun;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.121-122
    • /
    • 2010
  • In this research, reinforced concrete beam-column joint is examined. The main purpose of the research is assessment of influence the beam longitudinal reinforcement slippage to the joint shear and ductile capacity caused by bond decrement as a result of plastic hinges in adjacent beam.

  • PDF

Effect of the Size and Location of a Web Opening on the Shear Behavior of High-Strength Reinforced Concrete Deep Beams (고강도 철근콘크리트 깊은 보의 전단거동에 대한 개구부 크기 및 위치의 영향)

  • Yang, Keun-Hyeok;Eun, Hee-Chang;Chung, Heon-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.697-704
    • /
    • 2003
  • The purpose of this experimental study is to investigate the relationship of the shear behavior and the variety of width, depth and location of an opening in reinforced concrete deep beams with rectangular web openings, and to present an improved shear strength equation of those members. The main parameters considered were concrete strength(fck), shear span-to-overall depth ratio(a/h), and the size and vortical position of the web openings. Twenty five deep beams were tested under two symmetric loading-points. Test results showed that the shear behavior of deep beams with web openings was influenced by a/h and the size of opening. In addition, the KCI shear design provision is a tendency to be more unconservative according to the increase in a/h and the area-ratio of opening to shear span(Ao/Ash). Based on the concrete strut action of top and bottom member of an opening and the tie action of longitudinal reinforcement, a proper design equation which closely predicts the capacity of deep beams with rectangular openings is developed.

Experimental Study for Shear Strength of Fiber-Reinforced-Polymer Reinforced Concrete Beams (GFRP 보강근 콘크리트 보의 전단성능에 대한 실험적 고찰)

  • Park, Jong-Sup;Park, Young-Hwan;You, Young-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.57-60
    • /
    • 2008
  • Compared with a steel-reinforced section with equal areas of longitudinal reinforcement, a cross section using FRP flexural reinforcement after cracking has a smaller depth to the neutral axis because of the lower axial stiffness. The compression region of the cross section is reduced, and the crack widths are wider. As a result, the shear resistance provided by both aggregate interlock and compressed concrete is smaller. Research on the shear capacity of flexural members without shear reinforcement has indicated that the concrete shear strength is influenced by the stiffness of the flexural reinforcement. In this research, experimental observations were made for the shear strength of FRP reinforced concrete beam and validity of existing predicting equations were examined. Test results showed that shear strength decreased as shear-span increased.

  • PDF