• Title/Summary/Keyword: longitudinal shear capacity

Search Result 112, Processing Time 0.024 seconds

Seismic Performance Evaluation of Shear-Flexure RC Piers through Comparative test of Real Scale and Reduced Scale Model (실물 및 축소모형 비교실험을 통한 휨-전단 RC교각의 내진성능평가)

  • 곽임종;조창백;조정래;김영진;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.849-854
    • /
    • 2002
  • From the analysis results of some as-built drawings in national roadway bridges in Korea, many bridge piers are expected to show complex shear-flexural behaviour under earthquakes. But the previous research works about the seismic evaluation of bridges considered flexural behaviour RC piers only. In addition, the past bridge design specifications in Korea didn't include limitation on the amount of longitudinal lap splices in the plastic hinge zone of piers. Thus a large majority of non-seismically designed bridge piers in Korea may have lap splices in plastic hinge zone. In this study, prototype pier was selected among existent bridge piers whose failure mode is expected to be complex shear-flexural mode. And then, full scale and 1/2 reduced scale model RC piers with various longitudinal lap splice details were constructed. From the quasi static test results on these model RC piers, the effect of longitudinal lap splices on the seismic performance of bridges piers was analyzed. And the seismic capacity of the non-seismically designed shear-flexural RC piers was evaluated.

  • PDF

Flexural behaviour and capacity of composite panels of light gage steel and concrete

  • Shi, L.;Liu, Y.;Dawe, J.L.;Bischoff, P.
    • Steel and Composite Structures
    • /
    • v.9 no.5
    • /
    • pp.397-418
    • /
    • 2009
  • Eight panel specimens were tested in one-way bending to study the behaviour and capacity of composite slab joists consisting of cold-formed steel C-sections and concrete. Various shear transfer mechanisms were implemented on the C-section flange embedded in the concrete to provide the longitudinal shear resistance. Results showed that all specimens reached serviceability limit state while in elastic range and failure was ductile. Shear transfer achieved for all specimens ranged from 42 to 99% of a full transfer while specimens employed with shear transfer enhancements showed a greater percentage and therefore a higher strength compared with those relying only on surface bond to resist shear. The implementation of pre-drilled holes on the embedded flange of the steel C-section was shown to be most effective. The correlation study between the push-out and panel specimens indicated that the calculated moment capacity based on shear transfer resistance obtained from push-out tests was, on average, 10% lower than the experimental ultimate capacity of the panel specimen.

Seismic tests of RC shear walls confined with high-strength rectangular spiral reinforcement

  • Zhao, Huajing;Li, Qingning;Song, Can;Jiang, Haotian;Zhao, Jun
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.1-13
    • /
    • 2017
  • In order to improve the deformation capacity of the high-strength concrete shear wall, five high-strength concrete shear wall specimens confined with high-strength rectangular spiral reinforcement (HRSR) possessing different parameters, were designed in this paper. One specimen was only adopted high-strength rectangular spiral hoops in embedded columns, the rest of the four specimens were used high-strength rectangular spiral hoops in embedded columns, and high-strength spiral horizontal distribution reinforcement were used in the wall body. Pseudo-static test were carried out on high-strength concrete shear wall specimens confined with HRSR, to study the influence of the factors of longitudinal reinforcement ratio, hoop reinforcement form and the spiral stirrups outer the wall on the failure modes, failure mechanism, ductility, hysteresis characteristics, stiffness degradation and energy dissipation capacity of the shear wall. Results showed that using HRSR as hoops and transverse reinforcements could restrain concrete, slow load carrying capacity degeneration, improve the load carrying capacity and ductility of shear walls; under the vertical force, seismic performance of the RC shear wall with high axial compression ratio can be significantly improved through plastic hinge area or the whole body of the shear wall equipped with outer HRSR.

Predicting shear capacity of NSC and HSC slender beams without stirrups using artificial intelligence

  • El-Chabib, H.;Nehdi, M.;Said, A.
    • Computers and Concrete
    • /
    • v.2 no.1
    • /
    • pp.79-96
    • /
    • 2005
  • The use of high-strength concrete (HSC) has significantly increased over the last decade, especially in offshore structures, long-span bridges, and tall buildings. The behavior of such concrete is noticeably different from that of normal-strength concrete (NSC) due to its different microstructure and mode of failure. In particular, the shear capacity of structural members made of HSC is a concern and must be carefully evaluated. The shear fracture surface in HSC members is usually trans-granular (propagates across coarse aggregates) and is therefore smoother than that in NSC members, which reduces the effect of shear transfer mechanisms through aggregate interlock across cracks, thus reducing the ultimate shear strength. Current code provisions for shear design are mainly based on experimental results obtained on NSC members having compressive strength of up to 50MPa. The validity of such methods to calculate the shear strength of HSC members is still questionable. In this study, a new approach based on artificial neural networks (ANNs) was used to predict the shear capacity of NSC and HSC beams without shear reinforcement. Shear capacities predicted by the ANN model were compared to those of five other methods commonly used in shear investigations: the ACI method, the CSA simplified method, Response 2000, Eurocode-2, and Zsutty's method. A sensitivity analysis was conducted to evaluate the ability of ANNs to capture the effect of main shear design parameters (concrete compressive strength, amount of longitudinal reinforcement, beam size, and shear span to depth ratio) on the shear capacity of reinforced NSC and HSC beams. It was found that the ANN model outperformed all other considered methods, providing more accurate results of shear capacity, and better capturing the effect of basic shear design parameters. Therefore, it offers an efficient alternative to evaluate the shear capacity of NSC and HSC members without stirrups.

Proposition of a Predicting Equation for Shear Capacity of HSC Beam (단면의 모멘트를 이용한 고강도 콘크리트 보의 전단강도 예측식의 제안)

  • Choi Jeong Seon;Lee Chang Hoon;Lee Joo Ha;Yoon Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.375-378
    • /
    • 2005
  • In the mechanism of beam shear failure, beam action and arch action always exist simultaneously. According to a/d ratio, the proportion and contribution between these two actions to shear capacity are merely changed. Moreover, the current codes recommendations are founded on the experimental results with normal strength concrete, the applicable range of $f'_{c}$ must be extended. Based on this mechanism and new requirement, an analytical equation is proposed for shear capacity prediction of reinforced concrete beams without stirrups. To reflect contribution change of two actions, stress variation in longitudinal reinforcement along the span is considered with Jenq and Shah Model. Dowel action and shear friction are also taken into account. Size effect is included to derive more precise equation. It is shown that the proposed equation is more accurate than other empirical equations and codes. So, it can be possible that wide range of a/d ratio is considered by one equation.

  • PDF

Flexural/shear strength of RC beams with longitudinal FRP bars An analytical approach

  • Kosmidou, Parthena-Maria K.;Chalioris, Constantin E.;Karayannis, Chris G.
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.573-592
    • /
    • 2018
  • An analytical methodology for the calculation of the flexural and the shear capacity of concrete members with Fibre-Reinforced-Polymer (FRP) bars as tensional reinforcement is proposed. The flexural analysis is initially based on the design provisions of ACI 440.1R-15 which have properly been modified to develop general charts that simplify computations and provide hand calculations. The specially developed charts include non-dimensional variables and can easily be applied in sections with various geometrical properties, concrete grade and FRP properties. The proposed shear model combines three theoretical considerations to facilitate calculations. A unified flexural/shear approach is developed in flow chart which can be used to estimate the ultimate strength and the expected failure mode of a concrete beam reinforced with longitudinal FRP bars, with or without transverse reinforcement. The proposed methodology is verified using existing experimental data of 138 beams from the literature, and it predicts the load-bearing capacity and the failure mode with satisfactory accuracy.

Experimental Study on the Shear Capacity of Cap-Type Shear Connectors With Constant Intervals (단속배치된 캡 형상의 전단연결재의 전단내력에 관한 실험 연구)

  • Oh, Myoung Ho;Lee, Min Seok;Kim, Young Ho;Kim, Myeong Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.121-128
    • /
    • 2018
  • The push-out tests have been conducted on the specimens which consist of the steel beam with U-shape section and the cap-type shear connectors with constant intervals. Existing equations for the evaluation of shear connector strength have been investigated on the basis of test results. The reinforcing bars for longitudinal reinforcement and the penetrative bars for transverse reinforcement didn't have much effect on the shear capacity of the cap-type shear connector. The larger the width of cap-type shear connector was profiled, the greater the shear strength turned. The shear capacities of cap-type shear connectors with constant intervals were evaluated on the basis of push-out test results, and those were possible to be determined with proper safety margin using the Eurocode 4. The slip capacity of cap-type shear connector was shown to exceed the limit value of 6mm for sufficiently ductile behavior.

Evaluation of Shear Capacity of Wide Beam Reinforced with Shear Plates with Openings (유공형 판으로 전단보강된 넓은 보의 전단거동 평가)

  • Ko, Myung Joon;Lee, Young Hak;Kim, Min Sook;Park, Jong Yil;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.667-674
    • /
    • 2015
  • In this paper, shear behavior of concrete wide beam reinforced with plates with openings was evaluated. For this evaluation, evelen specimens were manufactured. One specimen was non-shear reinforced, five specimens were reinforced with steel plates and the other five specimens were reinforced GFRP plates. Shear strengths measured through experiments were compared with ones calculated from the equation provided by ACI 318. Longitudinal spacing of shear reinforcement, transverse spacing of shear reinforcement and shear reinforcement material were considered as variables. Test results showed that the shear strength increased as the transverse and longitudinal spacing of shear reinforcement became narrow. Also, regardless of material type of shear reinforcement, the shear capacity was similar when the amount of shear reinforcement was the same.

Lattice Shear Reinforcement for Earthquake-Resistance of Slab-Column Connection. (슬래브-기둥 접합부의 내진성능을 위한 래티스 전단보강)

  • Kim, You-Ni;Park, Hong-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.26-29
    • /
    • 2006
  • A flat plate-column connection is susceptible to brittle punching shear failure, which may result in the necessity of shear reinforcement. In present study, experimental tests were performed to study the capacity of slab-column connections strengthened with lattice, stud rail, shear band and stirrup under gravity and cyclic lateral load. Among them, the capacity of the specimens with lattice are superior to the others due to the truss action of the lattice bars and dowel action of the longitudinal bars as well as the shear resistance of the web re-bar. On the other hand, the strengths of the specimens with stud rail, shear band and stirrup are lower than the estimated strength by the ACI, therefore design formulas of the ACI are needed to revise.

  • PDF

Modeling shear capacity of RC slender beams without stirrups using genetic algorithms

  • Nehdi, M.;Greenough, T.
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.51-68
    • /
    • 2007
  • High-strength concrete (HSC) is becoming increasingly attractive for various construction projects since it offers a multitude of benefits over normal-strength concrete (NSC). Unfortunately, current design provisions for shear capacity of RC slender beams are generally based on data developed for NSC members having a compressive strength of up to 50 MPa, with limited recommendations on the use of HSC. The failure of HSC beams is noticeably different than that of NSC beams since the transition zone between the cement paste and aggregates is much denser in HSC. Thus, unlike NSC beams in which micro-cracks propagate around aggregates, providing significant aggregate interlock, micro-cracks in HSC are trans-granular, resulting in relatively smoother fracture surfaces, thereby inhibiting aggregate interlock as a shear transfer mechanism and reducing the influence of compressive strength on the ultimate shear strength of HSC beams. In this study, a new approach based on genetic algorithms (GAs) was used to predict the shear capacity of both NSC and HSC slender beams without shear reinforcement. Shear capacity predictions of the GA model were compared to calculations of four other commonly used methods: the ACI method, CSA method, Eurocode-2, and Zsutty's equation. A parametric study was conducted to evaluate the ability of the GA model to capture the effect of basic shear design parameters on the behaviour of reinforced concrete (RC) beams under shear loading. The parameters investigated include compressivestrength, amount of longitudinal reinforcement, and beam's depth. It was found that the GA model provided more accurate evaluation of shear capacity compared to that of the other common methods and better captured the influence of the significant shear design parameters. Therefore, the GA model offers an attractive user-friendly alternative to conventional shear design methods.