• Title/Summary/Keyword: longitudinal gusset plate

Search Result 7, Processing Time 0.029 seconds

Behavior and design of stainless steel tubular member welded end connections

  • Kiymaz, Guven;Seckin, Edip
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.253-269
    • /
    • 2014
  • Among the various alternatives to make a steel tubular member connection, making a slotted and gusset plate welded connection is one of the most frequently preferred alternatives. This type of connection is essentially an end connection that is made by slotting the tube longitudinally, inserting the gusset plate and then placing longitudinal fillet welds at the tube-to-plate interface. In this paper an experimental study on the behaviour of such connections in stainless steel is presented. 24 specimens were tested under concentrically applied axial tensile forces for varying tube-to-gusset plate weld lengths. Both circular and box section members were considered in the test program. Load-deformation curves were obtained and comparisons were made in terms of strength and ductility. The results obtained from the study were then critically examined and compared with currently available design guidance for slotted gusset plate welded tubular end connections. It is noted that no specific rules exist in international specifications on structural stainless steel which cover the design of such connections. Therefore, the results of this study are compared with the existing design rules for carbon steel.

A Study on the Fatigue Behavior of the Welded Structural Details in Plate Girder (플레이트거더 용접구조상세의 피로거동에 관한 연구)

  • Lee, Myeong-Gu;Lee, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.2
    • /
    • pp.14-20
    • /
    • 2008
  • The objective of this study is to examine fatigue strength of the welded details. In order to attain the goal of this study, the bending fatigue tests was performed for four kinds of welded details used in steel bridges, such as in-plane gusset, out-of-plane gusset, cruciform, and cover plate. The effect of the length of welded attachment on fatigue strength was greater in out-of-plane gusset than in in-plane gusset. The fatigue strength of welded details with short attachment was superior to that with long attachment. Fatigue strength of welded details with transversely loaded welds was lower than that with longitudinally loaded welds, and those results were not satisfied with AASHTO specifications. For the fatigue strength of cover plate, cover plate with rectangular section was superior to that with tapered section. It was found that the fatigue crack initiates at the points of stress concentration which are the boundary between the base metal and the bead of weld in the part of the longitudinal edge of attachment, and propagates first along the boundary and along the perpendicular to the direction of the principle stress in the base metal of welded tip.

Test and Analysis on the Longitudinal Gusset Plate Connection to Circular Hollow Section (CHS) of High Strength (고강도 원형강관의 길이방향 거셋플레이트 접합부 실험 및 해석)

  • Lee, Swoo-Heon;Shin, Kyung-Jae;Lee, Hee-Du;Kim, Woo-Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.35-46
    • /
    • 2012
  • With the increase in the demand for high-rise buildings, the use of high-strength steel has likewise increased. Thus, it has become more necessary to study the resistance force of the high-strength hollow structural section (HSS) joint of 600MPa. Additionally, the current design equation in Korea limits maximum yield stress at 360MPa in the case of HSS. In other words, since the current specification does not apply to HSS of 600MPa, this study aims to investigate the applicability of design equations as well as examine the behavior of the connection through the experiment and finite element analysis (FEA) of the plate-tube connection of 600MPa. In particular, this paper presents the behavior of joints with the gusset plates welded in the longitudinal direction of the circular hollow section (CHS) when the joints are subjected to lateral force. Comparing design equations with the results of FEA and the test, existing design equations are underestimated to be 56~79% in the case of high-strength materials.

Notch Fatigue Analysis Based on the Actual Bead Shape of Welded Joint (용접연결부의 실제 비드형상을 고려한 노치피로해석법)

  • Yang, Park-Dal-Chi;Park, Chi-Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.4
    • /
    • pp.417-423
    • /
    • 2009
  • This paper is concerned with the fatigue behaviour of welded joints by the notch stress approach. The actual welded shape is complex and 3-dimensional that may influence greatly the fatigue strength. The purpose of the paper is to present a way of modelling the actual weld bead shape by using a 3-D Laser scanner for experimental models of steel plates with longitudinal fillet welds, and applying its results to a proper notch stress method for the fatigue strength. The present approach to assess the fatigue strength is quite promising with application to a variety of welded joints and effects of weld profiling to fatigue strength.

Characteristic and Analysis of Fatigue Crack for Curved Girder Bridge based on the Stress Range Histerisis (실동이력에 기초한 곡선거더교의 피로균열 특성 및 분석)

  • Kwon, Soon Cheol;Kyung, Kab Soo;Kim, Da Young;Lee, Ha Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.1-13
    • /
    • 2008
  • The web of a horizontally curved plate girder bridge is, in general, subject to not only longitudinal flexural in-plane stress but also out-of-plane bending stress. Therefore, the induced stresses in the fillet welded joints at the intersection of the web and flange plates in the curved plate girder bridge can be considerably high, and the welded joints of gusset plates connecting the main girder to the floor beams or sway bracings can be subject to much more severe situation than those in the ordinary straight plate girder bridge. In order to investigate the cause of fatigue crack occurred in a curved girder bridge that has been served in about 23 years, in this study, field load tests have been performed to obtain the stress characteristics at the welded joint under the real traffic flow. Using the test results, we have investigated the causes of the occurrence of various fatigue cracks and have estimated the fatigue lives for the cracks. In addition, the characteristics of structural behavior at welded joint of the curved girder bridge have been examined by comparing the FE analysis and the field test result.

Application of Fatigue Life Assessment considering Residual Stresses for Various Welded Details (잔류응력을 고려한 피로수명평가법의 적용성 검토(I) - 다양한 용접연결부에 대한 적용 -)

  • Han, Jeong-Woo;Lee, Tak-Kee;Han, Seung-Ho;Kim, Jae-Hoon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.125-129
    • /
    • 2002
  • Authors had developed the model for the fatigue life assessment of welded details considering residual stress and its relaxation. The model consists of three ingredients; a hot-spot stress approach, a residual stress relaxation, and an equivalent stress. The equivalent stress is induced by stress ranges and the ratios between the applied mean stresses and the ultimate stress of material. Once being tuned with two specific fatigue tests by using load carrying cruciform joint, this model can be applied to many kinds of welded details which structural stress concentration factors are different from each other. This paper reports the application of the proposed model for various welded details including cover plate, longitudinal stiffener, gusset and side attachment. From the investigation of predicted results by using the proposed model it was shown that the ambiguous fatigue characteristics of the various details influenced widely by the welding residual stress are clarified, and also the model could be applied to assess fatigue life of general welded structures.

  • PDF

Fatigue Life Estimation of Welding Details by Using a Notch Strain Approach (노치변형률법을 적용한 용접구조상세의 피로수명평가)

  • Han, Jeong-Woo;Han, Seung-Ho;Shin, Byung-Chun;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.977-985
    • /
    • 2004
  • An evaluation of fatigue life of welded components is complicated due to various geometrically complex welding details and stress raisers in vicinity of weld beads, ego under cuts, overlaps and blow holes. These factors have a considerable influence on the fatigue strength of welded joints, as well as the welding residual stress which is relaxed depending on the distribution of local stress at the front of the stress raisers. To reasonably evaluate fatigue life, the effect of geometries and welding residual stress should be taken into account. The several methods based on the notch strain approach have been proposed in order to accomplish this. These methods, however, result in differences between analytical and experimental results due to discrepancies in estimated amount of relaxed welding residual stress present. In this paper, an approach that involves the use of a modified notch strain approach considering geometrical effects and a residual stress relaxation model based on experimental results was proposed. The fatigue life for five types of representative welding details, ego cruciform, cover plate, longitudinal stiffener, gusset and side attachment joint, are evaluated using this method.