• Title/Summary/Keyword: longitudinal elongation

Search Result 36, Processing Time 0.02 seconds

Anisotropic Mechanical Properties of Tantalum-Continuous-Fiber-Reinforced Zr-based Amorphous Matrix Composites Fabricated by Liquid Pressing Process (액상가압공정으로 제조된 탄탈륨 연속섬유 강화 Zr계 비정질 복합재료의 기계적 성질의 이방성)

  • Lee, Kyuhong;Lee, Sang-Bok;Lee, Sang-Kwan;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.542-549
    • /
    • 2009
  • Zr-based amorphous alloy matrix composites reinforced with tantalum continuous fibers were fabricated by the liquid pressing process, and their anisotropic mechanical properties were investigated by tensile and compressive tests of $0^{\circ}$(longitudinal)-, $45^{\circ}$-, and $90^{\circ}$(transverse)-orientation specimens. About 60 vol.% of tantalum fibers were homogeneously distributed inside the amorphous matrix, which contained a small amount of polygonal crystalline particles. The ductility of the tantalum-continuous-fiber-reinforced composite under tensile or compressive loading was dramatically improved over that of the monolithic amorphous alloy, while maintaining high strength. When the fiber direction was not matched with the loading direction, the reduction of the strength and ductility was not serious because of excellent fiber/matrix interfacial strength. Observation of the anisotropic deformation and fracture behavior showed the formation of multiple shear bands, the obstruction of crack propagation by fibers, and the deformation of fibers themselves, thereby resulting in tensile elongation of 3%~4% and compressive elongation of 15%~30%. These results suggest that the liquid pressing process was useful for the development of amorphous matrix composites with excellent ductility and anisotropic mechanical properties.

Influence of Hot-Extrusion on Mechanical Properties of AZ31B Magnesium Alloy Sheet (AZ31B 마그네슘 합금의 기계적 특성에 미치는 열간압출의 영향)

  • Kim Yong-Gil;Choi Hak-Kyu;Kang Min-Cheol;Jeong Hae-Yong;Bae Cha-Hurn
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.25-30
    • /
    • 2005
  • The microstructural changes by hot extrusion of AZ31B magnesium alloy were observed, and the relation to the tensile property was examined. The tensile properties as oriented longitudinal(L), half transverse(HT) and long transverse(LT) to the extrusion direction were investigated at $20^{\circ}C,\;100^{\circ}C,\;200^{\circ}C,\;300^{\circ}C\;and\;400^{\circ}C$, respectively. As the results, many recrystallized small grains distributed uniformly in large banded microstructures formed along the extrusion direction. The grain size of as-extruded specimen was around $30\~150\;{\mu}m$. As increasing the test temperature the tensile and yield strength with respect to the angle between the axis of the tensile and the longitudinal direction in extrusion was decreased, but their elongation were increased and their deviation between L and LT specimens have disappeared from $300^{\circ}C$. This mechanical anisotropy was reduced at elevated temperatures and almost disappeared at $400^{\circ}C$. It was considered that the homogenization was occured by the recrystallization and the change of slip system was occurred during tensile test process in elevated temperatures.

Elasto-plastic Finite Element Analysis for the Parametric Process Design of the Tension Leveller(1) -Unit Model Analysis (금속인장교정기의 공정변수 설계를 위한 탄소성 유한요소해석 (1)-단순모델 해석)

  • Lee, H.W.;Huh, H.;Park, S.R.
    • Transactions of Materials Processing
    • /
    • v.11 no.2
    • /
    • pp.138-146
    • /
    • 2002
  • This paper is concerned with the simulation-based process design method involved non-steady state problem of tension levelling considering the elasto-plastic hardening behavior of a metallic strip by a commercial code ABAQUS/Standard. The tension levelling process is peformed to elongate the strip plastically in combination of tensile and bending strain by a controlled manner so that all longitudinal fibers in the strip have an approximately equal amount of length and undesirable strip shapes are corrected to the flat share. Objectives of this paper are the development of a general method for the design of a tension leveller by a finite element method and parameter studies for the deisgn variables such as the applied tension, the roll intermash includes the determination of the steady state using the simple unit of the tension levelling line and the effect of the finite element mesh size on the amount and distribution of the strain calculated. The analysis provides the information about the intermesh effect on the amount and final shapes of the strip and distribution of the strain in order to determine the amount elongation for correction of the irregular share.

The Fatigue Crack Growth Behavior of Silicon Carbide Particles Reinforced Aluminun Metal Matrix Composites (SiC 입자 보강 Al 복합재료의 피로균열 진전거동)

  • 권재도;문윤배;김상태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.122-131
    • /
    • 1995
  • The research trends for metal matrix composites have been on basic mechanical properties, fatigue behavior after aging and fractographic observations. In this study, the fatigue crack initiation as well as the fatigue crack growth behavior and the fracture mechanism were investigated through observations of the fracture surface on silicon carbide particles reinforced aluminum metal matrix composites(SiCp/Al). Based on the fractographic study done by scanning electron microscope and replica, crack growth path model and fracture mechanism are presented. The mechanical properties, such as the tensile strength, yield strength and elongation of SiCp/Al composites are improved in a longitudinal direction, however, the fatigue life is shorter than the basic Al6061 alloys. From fractographic observations, it is found that the failure mode is ductile in basic Ai6061 alloys. And because some SiC particles were pulled out from the matrix and a few SiC particles could be seen on the fracture surface of SiCp/Al, crack growth paths are believed to follow the interface of the matrix and its particles.

EFFECT OF MICROSTRUCTURE ON MECHANICAL PROPERTIES IN FRICTION STIR WELDED CAST A356 ALUMINUM ALLOY

  • Sato, Yutaka S.;Kaneko, Takayasu;Urata, Mitsunori;Kokawa, Hiroyuki
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.493-498
    • /
    • 2002
  • Friction stir welding (FSW) is a relatively new solid-state joining process which can homogenize the heterogeneous microstructure by intensely plastic deformation arising from the rotation of the welding tool. The present study applied the FSW to an A356 aluminum (AI) alloy with the as-cast heterogeneous microstructure in the T6 temper condition, and examined an effect of microstructure on mechanical properties in the weld. The base material consisted of Al matrix with a high density of strengthening precipitates, large eutectic silicon and a lot of porosities. The FSW led to fragment of the eutectic silicon, extinction of the porosities and dissolution of the strengthening precipitates in the Al alloy. The dissolution of strengthening precipitates reduced the hardness of the weld around the weld center and the transverse ultimate tensile strength of the weld. Longitudinal tensile specimen containing only the stir zone showed the roughly same strength as the base material and a much larger elongation. Moreover, Charpy impact tests indicated that the stir zone had remarkably the higher absorbed energy than the base material. The higher mechanical properties of the stir zone were attributed to a homogenization of the as-cast heterogeneous microstructure by FSW.

  • PDF

Changes in Physical Properties of Paper by Solvent-Bonding between Cellulose Fibers Using Aqueous Solution of N-Methylmorpholine N-Oxide (N-Methylmorpholine N-Oxide 수용액을 이용한 셀룰로오스 섬유들간의 용제접착에 의한 종이의 물성 변화)

  • 이양헌;박찬헌;이현진;이선희
    • Textile Coloration and Finishing
    • /
    • v.11 no.1
    • /
    • pp.34-41
    • /
    • 1999
  • To examine the increase of paper strength by solvent-bonding using N-methylmorpholine N-oxide (NMMO), a paper was treated with aqueous solutions of NMMO, concentrated at $90^\circ{C}$ for selected periods of time, and pressed for 5 seconds followed by washing and drying. The effect of the increasing NMMO concentration on bonding state and some important properties of samples were mainly investigated. With increasing concentration of NMMO, the degree of bonding between fibers was increased, the fiber cross-sectional shape was changed from 'thin ribbonlike' to 'round rodlike' by swelling with solvent, and the longitudinal waves (crimp) were introduced to fibers, hence the shrinkage, weight per unit area, and thickness of paper were increased. Consequently, the tensile strength and elongation, under standard and wet conditions, and the stiffness were increased, and the water absorption was decreased generally with increasing concentration of NMMO. The moisture regain of treated samples was lower than that of the untreated sample, because of the reduction of space between fibers. But the moisture regain was increased a little with increasing concentration of NMMO due to the fiber swelling with NMMO followed by structural relaxation.

  • PDF

Activation of Nrf2 by sulfuretin stimulates chondrocyte differentiation and increases bone lengths in zebrafish

  • Seo-Hyuk Chang;Hoi-Khoanh Giong;Da-Young Kim;Suji Kim;Seungjun Oh;Ui Jeong Yun;Jeong-Soo Lee;Kye Won Park
    • BMB Reports
    • /
    • v.56 no.9
    • /
    • pp.496-501
    • /
    • 2023
  • Elongation of most bones occur at the growth plate through endochondral ossification in postnatal mammals. The maturation of chondrocyte is a crucial factor in longitudinal bone growth, which is regulated by a complex network of paracrine and endocrine signaling pathways. Here, we show that a phytochemical sulfuretin can stimulate hypertrophic chondrocyte differentiation in vitro and in vivo. We found that sulfuretin stabilized nuclear factor (erythroid-derived 2)-like 2 (Nrf2), stimulated its transcriptional activity, and induced expression of its target genes. Sulfuretin treatment resulted in an increase in body length of zebrafish larvae and induced the expression of chondrocyte markers. Consistently, a clinically available Nrf2 activator, dimethyl fumarate (DMF), induced the expression of hypertrophic chondrocyte markers and increased the body length of zebrafish. Importantly, we found that chondrocyte gene expression in cell culture and skeletal growth in zebrafish stimulated by sulfuretin were significantly abrogated by Nrf2 depletion, suggesting that such stimulatory effects of sulfuretin were dependent on Nrf2, at least in part. Taken together, these data show that sulfuretin has a potential use as supporting ingredients for enhancing bone growth.

A Study of Mode of Action of Alachlor III. Effect of Alachlor on Cell Division, Cell Kinetics, Cell Elongation, and Cell Differentiation in Oat (Avena sativa L.) (Alachlor의 제초기구(除草機構)에 관(關)한 연구(硏究) III. Alachlor가 귀리의 세포분열(細胞分裂), Cell kinetics, 세포신장(細胞伸長) 및 분화(分化)에 미치는 영향(影響))

  • Kwon, S.W.;Kim, J.C.
    • Korean Journal of Weed Science
    • /
    • v.12 no.2
    • /
    • pp.102-109
    • /
    • 1992
  • There was significant reduction in the mitotic indices of oat roots treated with alachlor. Uniform decrease in prophase, metaphase, anaphase, and telophase as treatment time increasing was observed. Alachlor did not disrupt mitosis, but rather inhibited the onset of mitosis. Labeled dividing cells were significantly inhibited, but the number of labeled interphase cells of all treatment were increased, as compared with control in 8 hr and 12hr period. Labeled dividing cells which entered mitosis thru $G_2$ were inhibited approximately 68% at 8hr after treatment with $1{\times}10^{-5}$ M of alachlor. Alachlor apparently inhibited from the $G_2$stage into mitosis of dividing cells. After 24 hr treatment, 12.1% abd 46.6% inhibition of coleoptile growth occurred at $1{\times}10^{-5}$ M and $1{\times}10^{-4}$ M, respectively. Cell elongation was inhibited by alachlor but was less sensitive than cell division. The longitudinal section cells of oat roots treated with $1{\times}10^{-4}$ M alachlor for 12 hr were observed to be enlarged central cylinder and also showed degradation of apical meristem zone, as compared with the untreated roots.

  • PDF

Changes of Elastic Properties in In Vivo Human Tibialis Anterior Aponeurosis Following Maximum Eccentric Exercise (최대 신장성 수축 운동 후 인체 족배굴곡근 건막의 탄성 변화)

  • Jeong, Jin-Young;Lee, Sung-Cheol;Lee, Hae-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.2
    • /
    • pp.207-213
    • /
    • 2011
  • The purpose of this study was to investigate changes in elastic properties of tendon structure of human ankle dorsiflexor following eccentric exercise. Six male subjects(age: $27.3{\pm}2.0$ years, height: $180.3{\pm}1.4$ cm, weight: $82.6{\pm}5.3$ kg) and three female subjects(age: $26.7{\pm}2.9$ years, height: $170.0{\pm}4.2$ cm, weight: $66.6{\pm}1.4$ kg) performed a single bout eccentric exercise consisting of 120 repetitions of maximum eccentric contractions. Prior to and following the eccentric exercise, isometric ankle dorsiflexion strength along with longitudinal ultrasound image of the tibialis anterior(TA) were collected. Muscle strength decreased about 30% after eccentric exercise. From the muscle strength vs. aponeurosis elongation curve, we obtained an index of stiffness. Stiffness of deep aponeurosis of the TA was assessed and found to be decreased from $87.4{\pm}33.56$ N/mm to $73.1{\pm}23.52$ N/mm. The results of this study suggest that decrease in stiffness of the TA aponeurosis following eccentric exercise might have significant implications to functions of the muscle-tendon complex and the involved joint motion and provide better understanding of eccentric exercise in the fields of training and rehabilitation.

A Study on Applicability of SP Creep Testing for Measurement of Creep Properties of Zr-2.5Nb Alloy (Zr-2.5Nb 합금의 크리프 물성 측정을 위한 SP 크리프 시험의 적용성에 대한 연구)

  • Park, Tae-Gyu;Ma, Young-Wha;Jeong, Ill-Seok;Yoon, Kee-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.94-101
    • /
    • 2003
  • The pressure tubes made of cold-worked Zr-2.5Nb alloy are subjected to creep deformation during service period resulting in changes to their geometry such as longitudinal elongation, diameter increase and sagging. To evaluate integrity of them, information on the material creep property of the serviced tubes is essential. As one of the methods with which the creep property is directly measured from the serviced components, small punch(SP) creep testing has been considered as a substitute for the conventional uniaxial creep testing. In this study, applicability of the SP creep testing to Zr-2.5Nb pressure tube alloy was studied particularly by measuring the power law creep constants, A, n. The SP creep test has been successfully applied fur other high temperature materials which have isotropic behavior. Since the Zr-2.5Nb alloy has anisotropic property, applicability of the SP creep testing can be limited. Uniaxial creep tests and small punch creep tests were conducted with Zr-2.5Nb pressure tube alloy along with finite element analyses. Creep constants obtained by each test method are compared. It was argued that the SP creep test result gave results reflecting material properties of both directions. But the equations derived in the previous study for isotropic materials need to be modified. Discussions were made fur future research directions for application of the SP creep testing to Zr-2.5Nb tube alloy.