• Title/Summary/Keyword: longitudinal damage

Search Result 245, Processing Time 0.027 seconds

Estimation of Fastened Condition of Bolts Using PZT Patches (압전소자를 이용한 볼트체결 상태계측 및 측정)

  • Chae, Kwan-Seok;Ha, Nam;Hong, Dong-Pyo;Chae, Hee-Chang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.889-893
    • /
    • 2004
  • This work presents a study on development of a practical and quantitative technique for assessment of the structural health condition by piezoelectric impedance-based technique associated with longitudinal wave propagation method. The bolt fastening condition is adjusted by torque wrench. In order to estimate the damage condition numerically, three damage indices, impedance peak frequency shift ${\Delta}F$ is proposed in this paper. Furthermore, an assessment method is described for estimation of the damage by using these three damage indices.

  • PDF

Basic research for Health Monitoring Technique with PZT Patches (압전소자를 이용한 손상계측기술에 관한 기초연구)

  • Ha, Nam;Chae, Kwan-Suk;Hong, Dong-Pyo;Chae, Hee-Chang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.870-874
    • /
    • 2004
  • This work presents a study on development of a practical and quantitative technique for assessment of the structural health condition by Piezoelectric impedance-based technique associated with longitudinal wave propagation method. The bolt fastening condition is adjusted by torque wrench. In order to estimate the damage condition numerically, three damage indices, impedance peak frequency shift ${\Delta}F$, peak amplitude ratio $\delta$ and quality factor ratio $\gamma$, are proposed in this paper. Furthermore, an assessment method is described for estimation of the damage by using these three damage indices.

  • PDF

Assessment of seismic damage inspection and empirical vulnerability probability matrices for masonry structure

  • Li, Si-Qi;Chen, Yong-Sheng;Liu, Hong-Bo;Du, Ke;Chi, Bo
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.387-399
    • /
    • 2022
  • To study the seismic damage of masonry structures and understand the characteristics of the multi-intensity region, according to the Dujiang weir urbanization of China Wenchuan earthquake, the deterioration of 3991 masonry structures was summarized and statistically analysed. First, the seismic damage of multistory masonry structures in this area was investigated. The primary seismic damage of components was as follows: Damage of walls, openings, joints of longitudinal and transverse walls, windows (lower) walls, and tie columns. Many masonry structures with seismic designs were basically intact. Second, according to the main factors of construction, seismic intensity code levels survey, and influence on the seismic capacity, a vulnerability matrix calculation model was proposed to establish a vulnerability prediction matrix, and a comparative analysis was made based on the empirical seismic damage investigation matrix. The vulnerability prediction matrix was established using the proposed vulnerability matrix calculation model. The fitting relationship between the vulnerability prediction matrix and the actual seismic damage investigation matrix was compared and analysed. The relationship curves of the mean damage index for macrointensity and ground motion parameters were drawn through calculation and analysis, respectively. The numerical analysis was performed based on actual ground motion observation records, and fitting models of PGA, PGV, and MSDI were proposed.

Seismic Ductility Assessment of RC Bridge Piers With Minor Earthquake Damage By the Quasi Static Test (유사정적실험에 의한 지진이력 철근콘크리트 교각의 내진 연성도 평가)

  • 이은희;정영수;박창규;김영섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.505-511
    • /
    • 2003
  • Experimental investigation was conducted into the flexure/shear-critical behavior of earthquake-damaged reinforced concrete columns with lap splicing of longitudinal reinforcement in the plastic hinge region. Six test specimens in the aspect ratio of 2,5 were made with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes of which magnitude could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under a constant axial load, P=$0.1f_{ck}A_g. Residual seismic performance of damaged columns was evaluated and compared to that of the corresponding original columns. Test results show that RC bridge piers with lap-spliced longitudinal steels in the plastic hinge region appeared to fail at low ductility. This was due to the debonding of the lap splice, which resulted from insufficient development of the longitudinal steels. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region indicated significant improvement both in flexural strength and displacement ductility, and strain energy ductility.

  • PDF

Residual ultimate strength of a very large crude carrier considering probabilistic damage extents

  • Choung, Joonmo;Nam, Ji-Myung;Tayyar, Gokhan Tansel
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.14-26
    • /
    • 2014
  • This paper provides the prediction of ultimate longitudinal strengths of the hull girders of a very large crude carrier considering probabilistic damage extent due to collision and grounding accidents based on IMO Guidelines (2003). The probabilistic density functions of damage extent are expressed as a function of non-dimensional damage variables. The accumulated probabilistic levels of 10%, 30%, 50%, and 70% are taken into account for the estimation of damage extent. The ultimate strengths have been calculated using the in-house software called Ultimate Moment Analysis of Damaged Ships which is based on the progressive collapse method, with a new convergence criterion of force vector equilibrium. Damage indices are provided for several probable heeling angles from $0^{\circ}$ (sagging) to $180^{\circ}$ (hogging) due to collision- and grounding-induced structural failures and consequent flooding of compartments. This paper proves from the residual strength analyses that the second moment of area of a damage section can be a reliable index for the estimation of the residual ultimate strength. A simple polynomial formula is also proposed based on minimum residual ultimate strengths.

Seismic Fragility Analysis by Key Components of a Two-pylon Concrete Cable-stayed Bridge (2주탑 콘크리트 사장교의 주요 부재 지진 취약도 분석)

  • Shin, Yeon-Woo;Hong, Ki-Nam;Kwon, Yong-Min;Yeon, Yeong-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.26-37
    • /
    • 2020
  • This study intends to present a fragility analysis method suitable for concrete cable-stayed bridges by performing an analysis reflecting design criteria and material characteristics from the results of inelastic time-history analysis. In order to obtain the fragility curve of the cable-stayed bridge, the limit state of the main component of the cable-stayed bridge is determined, and the damage state is classified by comparing it with the response value based on inelastic time history analysis. The seismic fragility curve of the cable-stayed bridge was made by obtaining the probability of damage to PGA that the dynamic response of the vulnerable parts to input ground motion would exceed the limit state of each structural member. According to the pylon's fragility curve, the probability of moderate damage at 0.5g is 32% for the longitudinal direction, while 7% for the transversal direction, indicating that the probability of damage in the longitudinal direction is higher in the same PGA than in the transversal direction. The seismic fragility curve of the connections showed a very high probability of damage, meaning that damage to the connections caused by earthquakes is very sensitive compared to damage to the pylon and cables. The cable's seismic fragility curve also showed that the probability of complete damage state after moderate damage state gradually decreased, resulting in less than 30% probability of complete damage at 2.0g.

Damage Analysis of Reinforced Concrete Columns under Cyclic Loading

  • Lee, Jee-Ho
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.67-74
    • /
    • 2001
  • In this study, a numerical model for the simulation of reinforced concrete columns subject to cyclic loading is presented. The model consists of three separate models representing concrete, reinforcing steel bars and bond-slip between a reinforcing bar and ambient concrete. The concrete model is represented by the plane stress plastic-damage model and quadrilateral finite elements. The nonlinear steel bar model embedded in truss elements is used for longitudinal and transverse reinforcing bars. Bond-slip mechanism between a reinforcing bar and ambient concrete is discretized using connection elements in which the hysteretic bond-slip link model defines the bond stress and slip displacement relation. The three models are connected in finite element mesh to represent a reinforced concrete structure. From the numerical simulation, it is shown that the proposed model effectively and realistically represents the overall cyclic behavior of a reinforced concrete column. The present plastic-damage concrete model is observed to work appropriately with the steel bar and bond-slip link models in representing the complicated localization behavior.

  • PDF

Evaluation of Ductility and Damage Ratio for Reinforced Concrete Bridge Piers (철근콘크리트 교각의 연성과 손상도 평가)

  • Park, Chang-Gyu;Lee, Dae-Hyoung;Lee, Eun-Hee;Kim, Hoon;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.197-204
    • /
    • 2002
  • The resent earthquakes in worldwide have caused extensive damage to highway reinforced concrete bridge piers. It has been observed in the Korean Peninsula that the number of minor or low earthquake motions have increased year by year. Since the concern about the earthquake hazards is increased, the objective of this research is to evaluate the damage of reinforced concrete bridge piers subjected to probable earthquake motions. Experimental investigation was conducted to study the seismic performance of the full-scale specimens in size D=1.2m H=4.8m, which were constructed with different longitudinal lap splice and loading pattern, through the quasi-static test and the pseudo-dynamic test. It is thought that this result could contribute to establish the retrofit decision-making and disaster planning of reinforced concrete bridge piers in earthquake regions. And it could be also possible to quantify the damage of reinforced concrete bridge piers under cyclic loading

  • PDF

Residual capacity assessment of post-damaged RC columns exposed to high strain rate loading

  • Abedini, Masoud;Zhang, Chunwei
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.389-408
    • /
    • 2022
  • Residual capacity is defined as the load carrying capacity of an RC column after undergoing severe damage. Evaluation of residual capacity of RC columns is necessary to avoid damage initiation in RC structures. The central aspect of the current research is to propose an empirical formula to estimate the residual capacity of RC columns after undergoing severe damage. This formula facilitates decision making of whether a replacement or a repair of the damaged column is adequate for further use. Available literature mainly focused on the simulation of explosion loads by using simplified pressure time histories to develop residual capacity of RC columns and rarely simulated the actual explosive. Therefore, there is a gap in the literature concerning general relation between blast damage of columns with different explosive loading conditions for a reliable and quick evaluation of column behavior subjected to blast loading. In this paper, the Arbitrary Lagrangian Eulerian (ALE) technique is implemented to simulate high fidelity blast pressure propagations. LS-DYNA software is utilized to solve the finite element (FE) model. The FE model is validated against the practical blast tests, and outcomes are in good agreement with test results. Multivariate linear regression (MLR) method is utilized to derive an analytical formula. The analytical formula predicts the residual capacity of RC columns as functions of structural element parameters. Based on intensive numerical simulation data, it is found that column depth, longitudinal reinforcement ratio, concrete strength and column width have significant effects on the residual axial load carrying capacity of reinforced concrete column under blast loads. Increasing column depth and longitudinal reinforcement ratio that provides better confinement to concrete are very effective in the residual capacity of RC column subjected to blast loads. Data obtained with this study can broaden the knowledge of structural response to blast and improve FE models to simulate the blast performance of concrete structures.