• Title/Summary/Keyword: longitudinal bonding

Search Result 53, Processing Time 0.03 seconds

An Experimental Study on the Evaluation of Effective Flexural Rigidity in Reinforced Concrete Members (철근콘크리트 부재의 유효 휨강성 평가를 위한 실험적 연구)

  • Kim Sang Sik;Lee Jin Seop;Lee Seung Bae;Jang Su Youn
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.131-134
    • /
    • 2005
  • Until recently tensile stresses in concrete have not been considered, since it does not affect the ultimate strength of reinforced concrete flexural members significantly. However, to verify the load-deflection relationship, the effect of tensile stresses between reinforcing bars and concrete, so-called tension stiffening effect must be taken into account. Main parameters of the tension stiffening behavior are known as concrete strength, and bond between concrete and reinforcing bars. In this study a total of twenty specimen subject to bending was tested with different concrete strength, coverage, and de-bonding length of longitudinal bars. The effects of these parameters on the flexural rigidity, crack initiation and propagation were carefully checked and analyzed.

  • PDF

Modeling of an embedded carbon nanotube based composite strain sensor

  • Boehle, M.;Pianca, P.;Lafdi, K.;Chinesta, F.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.263-273
    • /
    • 2015
  • Carbon nanotube strain sensors, or so called "fuzzy fiber" sensors have not yet been studied sufficiently. These sensors are composed of a bundle of fiberglass fibers coated with CNT through a thermal chemical vapor deposition process. The characteristics of these fuzzy fiber sensors differ from a conventional nanocomposite in that the CNTs are anchored to a substrate fiber and the CNTs have a preferential orientation due to this bonding to the substrate fiber. A numerical model was constructed to predict the strain response of a composite with embedded fuzzy fiber sensors in order to compare result with the experimental results obtained in an earlier study. A comparison of the numerical and experimental responses was conducted based on this work. The longitudinal sensor output from the model matches nearly perfectly with the experimental results. The transverse and off-axis tests follow the correct trends; however the magnitude of the output does not match well with the experimental data. An explanation of the disparity is proposed based on microstructural interactions between individual nanotubes within the sensor.

Evaluation of Adhesion Characteristics of Crack Sealants Used in Asphalt Concrete Pavement (아스팔트 콘크리트 포장용 균열실링재의 부착특성 평가)

  • Lee, Jae-Jun;Kim, Seung-Hoon;Baek, Jong-Eun;Lim, Jae-Kyu;Kim, Yong-Joo
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.55-62
    • /
    • 2015
  • Cracking is an inevitable fact of asphalt concrete pavements and plays a major role in pavement deterioration. Pavement cracking is one of the main factors determining the frequency and method of repair. Cracks can be treated with a number of preventative maintenance actions, including overlay surface treatments such as slurry sealing, crack sealing, or crack filling. Pavement cracks can show up as one or all of the following types: transverse, longitudinal, fatigue, block, reflective, edge, and slippage. Crack sealing is a frequently used pavement maintenance treatment because it significantly extends the pavement service life. However, crack sealant often fails prematurely due to a loss of adhesion. Because current test methods are mostly empirical and only provide a qualitative measure of the bond strength, they cannot accurately predict the adhesive failure of the sealant. This study introduces a laboratory test aimed at assessing the bonding of hot-poured crack sealant to the walls of pavement cracks. A pneumatic adhesion tensile testing instrument (PATTI) was adopted to measure the bonding strength of the hot-poured crack sealant as a function of the curing time and temperature. Based on a limited number of test results, the hot-poured crack sealants have very different bonding performances. Therefore, this test method can be proposed as part of a newly developed performance-based standard specification for hot-poured crack sealants for use in the future. PURPOSES : The purpose of this study was to evaluate both the adhesion and failure performance of a crack sealant as a function of its curing time and curing temperature. METHODS: A pneumatic adhesion tensile testing instrument (PATTI) was adopted to measure the adhesion performance of a crack sealant as a function of the curing time and curing temperature. RESULTS: With changes in the curing time, curing temperature, and sealant type, the bond strengths were found to be significantly different. Also, higher bond strengths were measured at lower temperatures. Different sealant types produced completely different bond strengths and failure behaviors. CONCLUSIONS: The bonding strength of an evaluated crack sealant was shown to differ depending on various factors. Two sealant types, which were composed of different raw materials, were shown to perform differently. The newly proposed test offers the possibility of evaluating and differentiating between different crack sealants. Based on alimited number of test results, this test method can be proposed as part of a newly developed performance-based standard specification for crack sealants or as part of a guideline for the selection of hot-poured crack sealant in the future.

Experimental Evaluation of Effective Flexural Rigidity in Reinforced Concrete Beams Considering Tension Stiffening Effect (인장증강효과를 고려한 철근콘크리트 보의 유효휨강성 평가)

  • Lee Seung-Bea;Jang Su-Youn;Kim Sang-Sik;Lee Jin-Seop
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1033-1042
    • /
    • 2005
  • Until recently tensile stresses in concrete have not been considered, since it does not affect the ultimate strength of reinforced concrete flexural members significantly However, to verify the load-deflection relationship, the effect of tensile stresses between reinforcing bars and concrete, so-called tension stiffening effect must be taken into account. Main parameters of the tension stiffening behavior are known as concrete strength, and bond between concrete and reinforcing bars. In this study total twenty specimens subjected to bending were tested with different concrete strength, coverage, and de-bonding length of longitudinal bars. The effects of these parameters on the flexural rigidity, crack initiation and propagation were carefully checked and analyzed.

Raman Scattering Characteristics on 3C-SiC Thin Films Deposited by APCVD Method (APCVD법으로 증착한 3C-SiC 박막의 라만 산란 특성)

  • Jeong, Jun-Ho;Chung, Gwiy-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.606-610
    • /
    • 2007
  • This paper describes the Raman scattering characteristics of polycrystalline (poly) 3C-SiC thin films, in which they were deposited on the oxidized Si substrate by APCVD method according to growth temperature. Since the phonon modes were not measured for $0.4{\mu}m$ thick 3C-SiC, $2.0{\mu}m$ thick 3C-SiC deposited on the oxidized Si at $1180^{\circ}C$, in which TO (transverse optical mode) and LO (longitudinal optical mode) phonon modes were appeared at 794.4 and $965.7cm^{-1}$, respectively. The broad FWHM (full width half maximum) can explain that the crystallinity of 3C-SiC deposited at $1180^{\circ}C$ becomes polycrystalline instead of disorder crystal. Additionally, the ratio of intensity $I_{LO}/I_{TO}{\approx}1.0$ of 3C-SiC indicates that the crystal disorder of $3C-SiC/SiO_2/Si$ is small. Compared poly $3C-SiC/SiO_2$ with $SiO_2/Si$ interfaces, $1122.6cm^{-1}$ phonon mode was measured which may belong to C-O bonding and two phonon modes, 1355.8 and $1596.8cm^{-1}$ related to D and G bands of C-C bonding in the Raman range of 200 to $2000cm^{-1}$.

LONGITUDINAL WAVES, STORING AND AMPLIFYING CAPABILITY OF INFORMATION IN WATER MOLECULES AND QUANTUM RESONANCE SPECTROMETER

  • Oh, Hung-Kuk
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.10b
    • /
    • pp.18-28
    • /
    • 1996
  • The outer-most electrons of metal atoms and the remaining valence electrons of any molecular atoms make three-dimensional crystallizing $\pi$-bondings. The rotating electrons on the three-dimensional crystallizing $\pi$-bonding orbitals of atoms make $\pi$-far infrared rays. Longitudinal wave is a propagation of a bundle of $\pi$-far infrared rays, which are produced by a dynamic impact on a solid bar. The $\pi$-far infrared rays make three-dimensional crystallizing $\pi$-bondings in the material, which reproduce the same $\pi$-far infrared rays. If a current signal is input into water molecules under a given electric potential field with $\pi$-far infrared rays (input information), the signal can be amplified because the $\pi$-far infrared rays make the $\pi$-bondings, which reduce electric resistance. The three-dimensional crystallizing $\pi$-bondings can induce normal electrons to move from one orbital to next one with a aid of potential electric field. Quantum Resonance Spectrometer is composed of tesla coil absorbing $\pi$-far infrared rays, tesla coil emitting varying electromagnetic waves signal generator, signal storage, human body amplifier, signal analyzer and data indicator. The absorbing tesla coil making varying magnetic field and downward and upward electric field, which resonates the $\pi$-far infrared rays coming out from specimen and absorbs them. The modulated current signal from the input square signal can generate and emit varying electromagnetic waves from the tesla coil. The varying electro-magnetic waves make the three-dimensional crystallizing $\pi$-bondings and the $\pi$-far infrared rays in the water molecules.

  • PDF

DENTIN PERMEABILITY CHANCE ACCORDING TO THE PROCESS OF COMPOMER RESTORATION (컴포머 충전과정에 따른 상아질 투과도의 변화)

  • Cho, Hye-Jin;Lee, Kyung-Ha;Lee, Se-Joon;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.4
    • /
    • pp.382-388
    • /
    • 2002
  • Compomer is composed of matrix and filler : matrix is made of the combination of resins and polycarboxylic molecules that are light-cured, and a filler is a glass component which is capable of ion-release. The resin content of compomers produces polymerization shrinkage which can adversely affect marginal adaptation. Pretreatment is a fundamental step which is treated with conditioner or primer in the use of these materials. Microleakage of restorative materials has been investigated mostly by dye penetration method. Dye penetration method was not quantitative and not measured repeatedly. Fluid filtration method, introduced and developed by Pashley's group, has been extensively used for 20 years for research purpose to understand the physiology of dentin, as well as the effects of various restorative treatments on dentin permeability. It permits quantitative, nondestructive measurment of microleakage in a longitudinal manner. The purpose of this study was to evaluate the change of dentin permeability according to the process of compomer restoration. In this study. Cl V cavities were prepared on buccal surface of thirty extracted human molars. The prepared cavities were etched by 37% phosphoric acid. The experimental teeth were randomly divided into three groups. Each group was treated with following materials Group 1 : Prime & Bond NT/Dyract AP, Group2: Single Bond/F2000 compomer, Group 3 : Syntac Single Component/Compoglass. The bonding agent and compomer were applied for each group following manufacturers information. Dentin permeability of each group was measured at each process by fluid filtration method; Step 1 : preparation(smear layer). Step 2 : etching(smear layer removal), Step 3 : applying the bonding agent, Step 4 : filling the compomer. Dentin permeability was expressed by hydraulic conductance ($\mu\textrm{l}$ min$^{-1}$cm$H_2O$$^{-1}$). The data were analysed statistically using One-way ANOVA and Sheffe's method. The results were as follows : 1. Dentin permeability differences between each process were significant except between step 1 and step 2(p<0.01). 2. Dentin permeability after removal of smear layer was highly increased(p<0.01). 3. In most case, decrease of dentin permeability was obtained by applying bonding agent(p<0.01). 4. Dentin permeability differences among the experimental groups were not significant(p>0.05). 5. None of compomers used in this study showed perfect seal at the interface.

A SCANNING ELECTRON MICROSCOPIC STUDY ON THE MARGINAL ADAPTIBILITY IN APPLYING THE CAVITY VARNISH AND DENTIN BONDING AGENT IN AMALGAM RESTORATIONS (아말감 수복시(修復時) Cavity varnish와 Bonding agent 도포(塗布)에 따른 접합성(接合性)에 관(關)한 주사전자현미경적(走査電子顯微鏡的) 연구(硏究))

  • Kim, Seok-Hoon;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.15 no.1
    • /
    • pp.107-119
    • /
    • 1990
  • The purpose of this study was to evaluate the marginal adaptability of the amalgam restorations in applying the cavity varnish (Copalite$^{(R)}$) and dentin bonding agent (Scotchbond 2$^{(R)}$) under the scanning electron microscope. For this study, eighteen sound extracted human molars were selected. Class I cavities in 12 teeth and class V cavities in 6 teeth were prepared using an air turbine with No. 701 tungsten carbide bur and finished using a low speed handpiece with No. 557 fissure bur. The prepared specimens were then divided into three groups including 4 class I cavities and 2 class V cavities in each group and restored as follows ; Group I. All the prepared cavities were restored with amalgam only (Control). Group II. Two layers of Copalite$^{(R)}$ cavity varnish were applied to the cavities with a gentle stream of air after each application and cavities were restored with amalgam. Group III. The enamel cavity margins were etched with 37% phosphoric acid gel for 60 sec., rinsed for 30 sec. and dried. One layer of visible lightcured Scotchbond Dental Adhesive$^{(R)}$ was applied and immediately cured for 20 seconds with visible light-cure unit and cavities were restored with amalgam. All the specimens were cut at the neck of the teeth and the occlusal halves of specimens were sectioned buccolingually in the longitudinal axis centering the amalgam restorations, using the disk. The cut specimens were ground with sandpapers (400, 600, 800, 1000 grit), and cleaned for 5 minutes in the ultrasonic cleaner (Brason Co. U.S.A.). In the cut surfaces, the amalgam - tooth interfaces were examined under the scanning electron microscope (JSM, 35C type, JEOL). The obtained results were as follows ; 1. The amalgam-tooth interfaces were reduced more significantly in the Copalite$^{(R)}$ and Scotchbond 2$^{(R)}$ application group than in the control group. 2. In the class I cavities, the Scotchbond 2$^{(R)}$ application group showed the findings similar to the Copalite$^{(R)}$ application group in the cavity floor, and the marginal adaptability was better in the side wall than in the cavity floor. 3. In the class I cavities, the Scotchbond 2$^{(R)}$ application group showed better marginal adaptability in the occlusal margin than in the gingival margin. 4. The marginal adaptability was in the order of the Scothbond 2$^{(R)}$ application group, the Copalite$^{(R)}$ application group and the control group.

  • PDF

Strength Characteristics in 3D-printed Concrete with Interlayer Reinforcements (층간 보강재로 보강한 3D 프린팅 콘크리트의 강도 특성)

  • Lee, Jung Woo;Park, Ji-Hun;Bui, The Quang;Jo, Changbin;Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.338-347
    • /
    • 2021
  • This paper aims to evaluating the interlayer strength of 3D-printed concrete with interlayer reinforcement. According to lap splices, two reinforcement methods were considered. One method did not include lap splices of interlayer reinforcement, but the other method included lap splices with length of 40mm. In addition, two different curing conditions were applied: air curing conditions and water curing conditions. The compressive, splitting tensile, and flexural tensile strengths of 3D-printed concrete specimens were measured in three loading directions with different reinforcement methods and curing conditions. Splitting and flexural tensile strengths decreased considerably when tensile stresses acted over the interlayers of 3D-printed concrete specimens. However, the flexural tensile strength or interlayer bonding strength of the printed specimens increased significantly at the interlayers when the longitudinal interlayer reinforcement penetrated printed layers. Interlayer bonding strength of printed concrete decreased after air curing treatment was applied because interlayers of printed concrete with more pores formed by the air cu ring conditions are more vulnerable to the load.

Behavior Evaluation of Thin Bonded Continuously Reinforced Concrete Overlay on Aged Jointed Concrete Pavement(2) (노후 줄눈 콘크리트 포장 보수를 위한 얇은 연속 철근 콘크리트 덧씌우기 포장의 거동 평가(2))

  • Ryu, Sung-Woo;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.101-110
    • /
    • 2010
  • In this paper, it has been studied about the CRCO to maintain or rehabilitate the aged JCP. The CRCO and JCO was constructed at useless section of Seo-Hae-Ahn express highway in South Korea. The performance evaluation was conducted. Especially, it was focused on the roll of longitudinal reinforced steels inserted into the CRCO. On crack survey results from field construction section, the reflection cracks at joint of the existing pavement occurred in CRCO. However, due to the constraints of longitudinal reinforced steels, crack width was small. Total crack length and quantity in the CRCO more than that in the JCO. And crack spacing in the CRCO was narrower than it in the CRCP. Through the bonding strength test results, if the cold milling and cleaning as well as surface treatment is applied, there will be no debonding problem at interlayer in the early age. From analysis of the horizontal behavior at the joint, the longitudinal reinforced steels constrained crack width which became wider than initial state over time. Also, that steel in the CRCO reduced the horizontal movement due to temperature variation(4 times than that in the JCO). But, if interface is debonded, the roll decreased. Vertical VWG data showed that CRCO did not occur debonding problem at steel location, but there was some problem in JCO. It was confirmed by field coring. The tensile strain appeared in the CRCO, But the compressive strain occurred in the JCO in early age. Through the FWD test result, deflection in the CRCO was less than that in the JCO. And K value in the CRCO was greater than it in the JCO.