• Title/Summary/Keyword: longitudinal/lateral error

Search Result 36, Processing Time 0.119 seconds

Evaluation of Combine IGRT using ExacTrac and CBCT In SBRT (정위적체부방사선치료시 ExacTrac과 CBCT를 이용한 Combine IGRT의 유용성 평가)

  • Ahn, Min Woo;Kang, Hyo Seok;Choi, Byoung Joon;Park, Sang Jun;Jung, Da Ee;Lee, Geon Ho;Lee, Doo Sang;Jeon, Myeong Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.201-208
    • /
    • 2018
  • Purpose : The purpose of this study is to compare and analyze the set-up errors using the Combine IGRT with ExacTrac and CBCT phased in the treatment of Stereotatic Body Radiotherapy. Methods and materials : Patient who were treated Stereotatic Body Radiotherapy in the ulsan university hospital from May 2014 to november 2017 were classified as treatment area three brain, nine spine, three pelvis. First using ExacTrac Set-up error calibrated direction of Lateral(Lat), Longitudinal(Lng), Vertical(Vrt), Roll, Pitch, Yaw, after applied ExacTrac moving data in addition to use CBCT and set-up error calibrated direction of Lat, Lng, Vrt, Rotation(Rtn). Results : When using ExacTrac, the error in the brain region is Lat $0.18{\pm}0.25cm$, Lng $0.23{\pm}0.04cm$, Vrt $0.30{\pm}0.36cm$, Roll $0.36{\pm}0.21^{\circ}$, Pitch $1.72{\pm}0.62^{\circ}$, Yaw $1.80{\pm}1.21^{\circ}$, spine Lat $0.21{\pm}0.24cm$, Lng $0.27{\pm}0.36cm$, Vrt $0.26{\pm}0.42cm$, Roll $1.01{\pm}1.17^{\circ}$, Pitch $0.66{\pm}0.45^{\circ}$, Yaw $0.71{\pm}0.58^{\circ}$, pelvis Lat $0.20{\pm}0.16cm$, Lng $0.24{\pm}0.29cm$, Vrt $0.28{\pm}0.29cm$, Roll $0.83{\pm}0.21^{\circ}$, Pitch $0.57{\pm}0.45^{\circ}$, Yaw $0.52{\pm}0.27^{\circ}$ When CBCT is performed after the couch movement, the error in brain region is Lat $0.06{\pm}0.05cm$, Lng $0.07{\pm}0.06cm$, Vrt $0.00{\pm}0.00cm$, Rtn $0.0{\pm}0.0^{\circ}$, spine Lat $0.06{\pm}0.04cm$, Lng $0.16{\pm}0.30cm$, Vrt $0.08{\pm}0.08cm$, Rtn $0.00{\pm}0.00^{\circ}$, pelvis Lat $0.06{\pm}0.07cm$, Lng $0.04{\pm}0.05cm$, Vrt $0.06{\pm}0.04cm$, Rtn $0.0{\pm}0.0^{\circ}$. Conclusion : Combine IGRT with ExacTrac in addition to CBCT during Stereotatic Body Radiotherapy showed that it was possible to reduce the set-up error of patients compared to single ExacTrac. However, the application of Combine IGRT increases patient set-up verification time and absorption dose in the body for image acquisition. Therefore, depending on the patient's situation that using Combine IGRT to reduce the patient's set-up error can increase the radiation treatment effectiveness.

  • PDF

A Radiographic Analysis of the Feet in Heel Pain (뒤꿈치 통증이 있는 족부의 방사선학적 분석)

  • Moon, Hyung-Tae;Moon, Jeong-Seok;Lee, Woo-Chun
    • Journal of Korean Foot and Ankle Society
    • /
    • v.9 no.1
    • /
    • pp.9-12
    • /
    • 2005
  • Purpose: This study is to compare the medial longitudinal arch between heel pain group and normal painless group. Materials and Methods: Heel pain group 242 feet and normal group 140 feet were evaluated through the radiographic images of standing foot-ankle lateral view. Four radiographic indices, talo-1stmetatarsal angle (TMA), calcaneal-1st metatarsal angle (CMA), calcaneal pitch angle (CPA), and arch ratio (AR), were used as well as BMI. Results: There was no difference between heel pain group and normal group in the TMA, CMA, CPA, and AR. But in the BMI, heel pain group showed $1.7\;kg/m^2$ (p=0.0002) higher than normal group. To eliminate the sexual error, male and female were evaluated separately. Male heel pain group showed 2.9 degrees more dorsiflexion (p=0.001) in the TMA, 3.1 degrees greater (p=0.007) in the CMA, 0.01 lower (p=0.028) in the AR, and $1.0\;kg/m^2$ greater (p=0.033) in the BMI than normal male group. There were no difference in the CPA. Female heel pain group showed 3.6 degree greater (p=0.035) in the CMA, and $1.9\;kg/m^2$ greater (p=0.002) in the BMI than normal female group. But other indices demonstrated no differences. Conclusion: talo-$1^{st}$ metatarsal angle, calcaneal-$1^{st}$ metatarsal angle and arch ratio were radiographic indices related with heel pain.

  • PDF

The error analysis of field size variation in pelvis region by using immobilization device (고정기구의 사용이 골반부위 방사선조사영역의 변화에 미치는 오차분석)

  • Kim, Ki-Hwan;Kang, No-Hyun;Bim, Dong-Wuk;Kim, Jun-Sang;Jang, Ji-Young;Kim, Yong-Eun;Kim, Jae-Sung;Cho, Moon-June
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.1
    • /
    • pp.31-36
    • /
    • 2000
  • In radiotherapy, it may happen to radiate surrounding normal tissue because of inconsistent field size by changing patient position during treatment. We are going to analyze errors reduced by using immobilization device with Electonic portal imaging device(EPID) in this study. We had treated the twenty-one patients in pelvic region with 10 MV X-ray from Aug. 1998 to Aug. 1999 at Chungnam National University Hospital. All patients were treated at supine position during treatment. They were separated to two groups, 11 patients without device and 10 patients with immobilization device. We used styrofoam for immobilization device and measured the errors of anterior direction for x, y axis and lateral direction for z, y axis from simulation film to EPID image using matching technique. For no immobilization device group, the mean deviation values of x axis and y axis are 0.19 mm. 0.48 mm, respectively and the standard deviations of systematic deviation are 2.38 mm, 2.19 mm, respectively and of random deviation for x axis and y axis are 1.92 mm. 1.29 mm, respectively. The mean deviation values of z axis and y axis are -3.61 mm. 2.07 mm, respectively and the standard deviations of systematic deviation are 3.20 mm, 2.29 mm, respectively and of random deviation for z axis and y axis are 2.73 mm. 1.62 mm, respectively. For immobilization device group, the mean deviation values of x axis and y axis are 0.71 mm. -1.07 mm, respectively and the standard deviations of systematic deviation are 1.80 mm, 2.26 mm, respectively and of random deviation for x axis and y axis are 1.56 mm. 1.27 mm, respectively. The mean deviation values of z axis and y axis are -1.76 mm. 1.08 mm, respectively and the standard deviations of systematic deviation are 1.87 mm, 2.83 mm, respectively and of random deviation for x axis and y axis are 1.68 mm, 1.65 mm, respectively. Because of reducing random and systematic error using immobilization device, we had obtained good reproducibility of patient setup during treatment so that we recommend the use of immobilization device in pelvic region of radiation treatment.

  • PDF

Distribution of Natural Frequency of 2-DOF Approximate Model of Stay Cable to Reduction of Area (단면감소에 따른 사장케이블의 2-자유도 근사모델의 고유진동수 분포)

  • Joe, Yang-Hee;Lee, Hyun-Chol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.147-154
    • /
    • 2014
  • The cable damages of the bridge structures induce very important impact on the structural safety, which implies the close monitoring of the cable damage is required to secure sustained safety of the bridges. Most usual available maintenance techniques are based on the monitoring the change of the natural frequency of the structures by damages. However, existing method are based on vibration method to calculate lateral vibration and system identification can calculate the axial stiffness using sensitivity equation by trial error method. But the frequency study by the longitudinal movement need because of the sag effect in system identification. This study proposes a new method to investigate the damage magnitudes and status. The method improves the accuracies in the magnitudes and status of damages by adopting the natural frequency of longitudinal movement. The study results have been validated by comparing them with the approximate solution of FEM. Thus, the relationship of cable damage and frequency appear with relation that the severe damage has the little frequency. If we know the real frequency we can estimate the cable damage severity using this relationship. This method can be possible the efficient management of the cable damage.

Usefulness of Non-coplanar Helical Tomotherapy Using Variable Axis Baseplate (Variable Axis Baseplate를 이용한 Non-coplanar 토모테라피의 유용성)

  • Ha, Jin-Sook;Chung, Yoon-Sun;Lee, Ik-Jae;Shin, Dong-Bong;Kim, Jong-Dae;Kim, Sei-Joon;Jeon, Mi-Jin;Cho, Yoon-Jin;Kim, Ki-Kwang;Lee, Seul-Bee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.1
    • /
    • pp.31-39
    • /
    • 2011
  • Purpose: Helical Tomotherapy allows only coplanar beam delivery because it does not allow couch rotation. We investigated a method to introduce non-coplanar beam by tilting a patient's head for Tomotherapy. The aim of this study was to compare intrafractional movement during Tomotherapy between coplanar and non-coplanar patient's setup. Materials and Methods: Helical Tomotherapy was used for treating eight patients with intracranial tumor. The subjects were divided into three groups: one group (coplanar) of 2 patients who lay on S-plate with supine position and wore thermoplastic mask for immobilizing the head, second group (non-coplanar) of 3 patients who lay on S-plate with supine position and whose head was tilted with Variable Axis Baseplate and wore thermoplastic mask, and third group (non-coplanar plus mouthpiece) of 3 patients whose head was tilted and wore a mouthpiece immobilization device and thermoplastic mask. The patients were treated with Tomotherapy after treatment planning with Tomotherapy Planning System. Megavoltage computed tomography (MVCT) was performed before and after treatment, and the intrafractional error was measured with lateral(X), longitudinal(Y), vertical(Z) direction movements and vector ($\sqrt{x^2+y^2+z^2}$) value for assessing overall movement. Results: Intrafractional error was compared among three groups by taking the error of MVCT taken after the treatment. As the correction values (X, Y, Z) between MVCT image taken after treatment and CT-simulation image are close to zero, the patient movement is small. When the mean values of movement of each direction for non-coplanar setup were compared with coplanar setup group, X-axis movement was decreased by 13%, but Y-axis and Z-axis movement were increased by 109% and 88%, respectively. Movements of Y-axis and Z-axis with non-coplanar setup were relatively greater than that of X-axis since a tilted head tended to slip down. The mean of X-axis movement of the group who used a mouthpiece was greater by 9.4% than the group who did not use, but the mean of Y-axis movement was lower by at least 64%, and the mean of Z-axis was lower by at least 67%, and the mean of Z-axis was lower by at least 67%, and the vector was lower by at least 59% with the use of a mouthpiece. Among these 8 patients, one patient whose tumor was located on left frontal lobe and left basal ganglia received reduced radiation dose of 38% in right eye, 23% in left eye, 30% in optic chiasm, 27% in brain stem, and 8% in normal brain with non-coplanar method. Conclusion: Tomotherapy only allows coplanar delivery of IMRT treatment. To complement this shortcoming, Tomotherapy can be used with non-coplanar method by artificially tilting the patient's head and using an oral immobilization instrument to minimize the movement of patient, when intracranial tumor locates near critical organs or has to be treated with high dose radiation.

  • PDF

Development of Tomotherapy couch device capable of yaw-directional correction (Yaw방향의 보정이 가능한 Tomotherapy couch device의 개발)

  • Chae, Moon Ki;Kwon, Dong Yeol;Sun, Jong Lyool;Choi, Byung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.139-151
    • /
    • 2018
  • Objectives : A self-made "Tomotherapy couch device" capable of correcting the Yaw direction was fabricated and evaluated for its usefulness. Materials and Methods : "Tomotherapy couch device" capable of correcting the Yaw direction is made of rigid fibreboard with a flexural strength of $200kg/cm^2$. CBCT Image from Novalis Tx and Iso-Align Phantom from MED-TEC were used to evaluate the physical accuracy. The treatment plan was designed using Accuray $Precision^{TM}$ and In House Head and Phantom. Accuray $PrecisionART^{TM}$ and $Precision^{TM}$ was used to evaluate dose. Results : Evaluation results, the self-fabricated device accurately corrected the setup error, Target dose was within 95 %~107 % of all. In order to directly evaluate the OAR dose according to the Yaw change, the absolute dose was measured. As a result, when the error in the Yaw direction was $3^{\circ}$, the specific OAR showed a maximum difference of 18.4 %. Conclusion : "Tomotherapy couch device" capable of correcting the Yaw direction can be manufactured at a lower cost compared to the effect, and it can prevent the patient's MVCT image dose for re-imaging. Accurate radiation therapy without errors can be performed.

  • PDF