Long term streamflow regime under virtual climate change scenario was examined. Rainfall forecast simulation of the Canadian Global Coupled Model (CGCM2) of the Canadian Climate Center for modeling and analysis for the IPCC SRES B2 scenario was used for analysis. The B2 scenario envisions slower population growth (10.4 billion by 2010) with a more rapidly evolving economy and more emphasis on environmental protection. The relatively large scale of GCM hinders the accurate computation of the important streamflow characteristics such as the peak flow rate and lag time, etc. The GCM rainfall with more than 100km scale was downscaled to 2km-scale using the space-time stochastic random cascade model. The HEC-HMS was used for distributed hydrologic model which can take the grid rainfall as input data. The result illustrates that the annual variation of the total runoff and the peak flow can be much greater than rainfall variation, which means actual impact of rainfall variation for the available water resources can be much greater than the extent of the rainfall variation.
In this study, we suggested the optimal training period for predicting the streamflow using the LSTM (Long Short-Term Memory) model based on the deep learning and CMIP5 (The fifth phase of the Couple Model Intercomparison Project) future climate scenarios. To validate the model performance of LSTM, the Jinan-gun (Seongsan-ri) site was selected in this study. We comfirmed that the LSTM-based streamflow was highly comparable to the measurements during the calibration (2000 to 2002/2014 to 2015) and validation (2003 to 2005/2016 to 2017) periods. Additionally, we compared the LSTM-based streamflow to the SWAT-based output during the calibration (2000~2015) and validation (2016~2019) periods. The results supported that the LSTM model also performed well in simulating streamflow during the long-term period, although small uncertainties exist. Then the SWAT-based daily streamflow was forecasted using the CMIP5 climate scenario forcing data in 2011~2100. We tested and determined the optimal training period for the LSTM model by comparing the LSTM-/SWAT-based streamflow with various scenarios. Note that the SWAT-based streamflow values were assumed as the observation because of no measurements in future (2011~2100). Our results showed that the LSTM-based streamflow was similar to the SWAT-based streamflow when the training data over the 30 years were used. These findings indicated that training periods more than 30 years were required to obtain LSTM-based reliable streamflow forecasts using climate change scenarios.
Much attention has been needed in water resource management at the watershed due to drought and flooding issues caused by climate change in recent years. Increase in air temperature and changes in precipitation patterns due to climate change are affecting hydrologic cycles, such as evaporation and soil moisture. Thus, these phenomena result in increased runoff at the watershed. The Soil and Water Assessment Tool (SWAT) model has been used to evaluate rainfall-runoff at the watershed reflecting effects on hydrology of various weather data such as rainfall, temperature, humidity, solar radiation, wind speed. For bias-correction of RCP data, at least 30 year data are needed. However, for most gaging stations, only precipitation data have been recorded and very little stations have recorded other weather data. In addition, the RCP scenario does not provide all weather data for the SWAT model. In this study, two scenarios were made to evaluate whether it would be possible to estimate streamflow using measured precipitation and long-term average values of other weather data required for running the SWAT. With measured long-term weather data (scenario 1) and with long-term average values of weather data except precipitation (scenario 2), the estimate streamflow values were almost the same with NSE value of 0.99. Increase/decrease by ${\pm}2%$, ${\pm}4%$ in temperature and humidity data did not affect streamflow. Thus, the RCP precipitation data for Hongcheon watershed were bias-corrected with measured long-term precipitation data to evaluate effects of climate change on streamflow. The results revealed that estimated streamflow for 2055s was the greatest among data for 2025s, 2055s, and 2085s. However, estimated streamflow for 2085s decreased by 9%. In addition, streamflow for Spring would be expected to increase compared with current data and streamflow for Summer will be decreased with RCP data. The results obtained in this study indicate that the streamflow could be estimated with long-term precipitation data only and effects of climate change could be evaluated using precipitation data as shown in this study.
A system for regularly appraising the reliability of streamflow data, KORSAS (KOwaco's Regular Streamflow Appraising System) was developed on PC based Windows for hydrological specialists and engineers working in the Korea Water Resources Corporation (KOWACO). The reliability of streamflow rates can be evaluated with KORSAS in various as pects according to the evaluation duration and method. The former being selected as short term (event based) or long term(continus based), and the latter being classified into comparison methods of flow measurement, other stations results, and simulation. Rainfall-runoff models can be used together with KORSAS in order to evaluate the reliability of observed flow data by comparing with simulated flow data. The objective of this study is to develop a systematic methodology in various aspects to evaluate the reliability of streamflow data regularly.
RDAPS 수치예보로부터 생산된 일단위 강우시계열을 바탕으로 유량 예측을 모의하고, 정성적인 중장기 예보를 고려한 ESP 분석을 수행하여 결과를 비교하고 적용성을 검토하였다. 금강유역을 대상으로 ESP, 정성적 기상예보를 고려한 ESP, RDAPS 기상수치예보에의한유량예측결과를평균유출량과비교 분석을 통해각기법별 결과의 개선효과를 평가하였다. 예측 모의 결과 기상정보를 고려한 ESP 방법의 결과가상대적으로 양호한 것으로 분석되었다. 확률예측의 정확도를 평가하기 위한 불일치율(Discrepancy Ratio) 분석 결과에서도 같은 결과를 얻었다. RDAPS 수치예보의 경우 3시간 단위의 누적강수라는 특성이 감안된 시간분해능을 갖는 일단위 시나리오로 개선되거나 장기간 동안 지속적인 모의 평가가 이루어진다면 더욱 정밀한 유량예측을 모의 할 수 있을 것으로 예상된다.
Recently, the hydrological model Soil Water Assessment Tool (SWAT) has been applied in many watersheds in South Korea. This study estimated parameters in SWAT for calibrating streamflow in long-term drought periods. Therefore, we focused on the continuous severe drought periods 2014~2015, and understand the model calibrated parameters. The SWAT was applied to a $366.5km^2$ Gongdo watershed by using 14 years (2002~2015) daily observed streamflow (Q) including two years extreme drought period of 2014~2015. The 9 parameters of CN2, CANMX, ESCO, SOL_K, SLSOIL, LAT_TIME, GW_DELAY, GWQMN, ALPHA_BF were selected for model calibration. The SWAT result by focusing on 5 normal years (2002~2006) calibration showed the 14 years average Nash-Sutcliffe model efficiency (NSE) for Q and 1/Q with 0.78 and 0.58 respectively. On the other hand, the 14 years average NSEs of Q and 1/Q by focusing on 2 drought years (2014~2015) calibration were 0.86 and 0.76 respectively. Thus, we could infer that the SWAT calibration trial by focusing on drought periods data can be a good approach to calibrate both high flow and low flow by controlling the 9 drought affected parameters.
Land-use change has an important role in the hydrologic characteristics of watersheds because it alters various hydrologic components such as interception, infiltration, and evapotranspiration. For example, rapid urbanization in a watershed reduces infiltration rates and increases peak flow which lead to changes in the hydrologic responses. In this study, a physical hydrologic model the soil and water assessment tool (SWAT) was used to assess long-term continuous daily streamflow corresponding to land-use changes that occurred in the Naesungchun river watershed. For a 30-year model simulation, 3 different land-use maps of the 1990s, 2000s, and 2010s were used to identify the impacts of the land-use changes. Using SWAT-CUP (calibration and uncertainty program), an automated parameter calibration tool, 23 parameters were selected, optimized and compared with the daily streamflow data observed at the upstream, midstream and downstream locations of the watershed. The statistical indexes used for the model calibration and validation show that the model performance is improved at the downstream location of the Naesungchun river. The simulated streamflow in the mainstream considering land-use change increases up to -2 - 30 cm compared with the results simulated with the single land-use map. However, the difference was not significant in the tributaries with or without the impact of land-use change.
본 연구에서는 융설을 고려할 수 있는 물수지 모형인 WASMOD(Water And Snow MODeling system)에 대하여 기술하였으며, 소양강댐 상류유역에 적용하여 장기 월 유출량을 산정하였다. WASMOD의 장점은 입력자료의 구축이 간단하며 사용자가 쉽게 운영할 수 있다는 점이다. 모형의 매개변수를 최적화하기 위해 자동추적법인 VA05A를 이용하였으며, 관측 월 유출 수문곡선과 모의 월 수문곡선을 비교하였다. 관측 유출량과 계산 유출량간의 상관계수가 0.89이상으로, 이를 통해 WASMOD의 국내 유역에 적용가능성을 확인할 수 있었다.
In this study, four methods for calculation of continuous daily flow was suggested using short-term or partial recording station of streamflow including missing data. Using these methods, standard flows at the outlet of unit/small basins for the management of total maximum daily loads (TMDLs) in Namgang dam basin were estimated from full-period flow duration curve (FDC). Four methods of extension are described, and their properties are explored. The methods are regression (REG), regression plus noise (RPN), and maintenance of variance extension types 1 and 2 (MOVE.1, MOVE.2). In these methods, the continuous daily flow was calculated using extension equation based on correlation analysis, after conducting the correlation analysis between historic record of streamflow and long-term recording station (a base station). Finally the best optimal method was selected as the MOVE.2, and the standard flows in the abundant, ordinary, low and drought flow estimated from FDC was evaluated using MOVE.2 in unit/small basins.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.