• 제목/요약/키워드: long-term prediction

검색결과 950건 처리시간 0.027초

촉진열화 및 장기폭로시험에 의한 고성능 PC패널의 내구성능 및 열화특성 (Characterization of Durability of PC panel by Accelerating Test in Deterioration Chamber and Long-Term Field Exposure Test)

  • 마상준;장필성;최재석;주정민
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1549-1554
    • /
    • 2008
  • In this paper, The evaluation of durability of the PC Panel lining for tunnel structure was examined through the rapid test by carbonation and freezing and thawing. Also for the purpose of improvement of durability. Namely, the durable characteristics of PC Panel lining by carbonation and freezing and thawing, was evaluated by rapid test and long-term field exposure test and main influence factors were derived. As a result of test, Correlation of accelerating test in deterioration chamber and long-term field exposure test, it will be expected that the proposed correlation well to the prediction of life expectancy of structure and is contributed greatly in the future.

  • PDF

Radar Quantitative Precipitation Estimation using Long Short-Term Memory Networks

  • Thi, Linh Dinh;Yoon, Seong-Sim;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.183-183
    • /
    • 2020
  • Accurate quantitative precipitation estimation plays an important role in hydrological modelling and prediction. Instantaneous quantitative precipitation estimation (QPE) by utilizing the weather radar data is a great applicability for operational hydrology in a catchment. Previously, regression technique performed between reflectivity (Z) and rain intensity (R) is used commonly to obtain radar QPEs. A novel, recent approaching method which might be applied in hydrological area for QPE is Long Short-Term Memory (LSTM) Networks. LSTM networks is a development and evolution of Recurrent Neuron Networks (RNNs) method that overcomes the limited memory capacity of RNNs and allows learning of long-term input-output dependencies. The advantages of LSTM compare to RNN technique is proven by previous works. In this study, LSTM networks is used to estimate the quantitative precipitation from weather radar for an urban catchment in South Korea. Radar information and rain-gauge data are used to evaluate and verify the estimation. The estimation results figure out that LSTM approaching method shows the accuracy and outperformance compared to Z-R relationship method. This study gives us the high potential of LSTM and its applications in urban hydrology.

  • PDF

NARX 신경회로망을 이용한 부하추종운전시의 울진 3호기 원자로 모델링 (Nuclear Reactor Modeling in Load Following Operations for UCN 3 with NARX Neural Network -)

  • 이상경;이은철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.21-23
    • /
    • 2005
  • NARX(Nonlinear AutoRegressive with eXogenous input) neural network was used for prediction of nuclear reactor behavior which was influenced by control rods in short-term period and also by xenon and boron in long-term period in load following operations. The developed model was designed to predict reactor power, xenon worth and axial offset with different burnup rates when control rod and boron were adjusted in load following operations. Data of UCN 3 were collected by ONED94 code. The test results presented exhibit the capability of the NARX neural network model to capture the long term and short term dynamics of the reactor core and seems to be utilized as a handy tool for the use of a plant simulation.

  • PDF

신경회로망을 이용한 부하추종운전중의 차세대 원자로 모델링 (Nuclear Reactor Modeling in Load Following Operations for Korea Next Generation PWR with Neural Network)

  • 이상경;장진욱;성승환;이은철
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권9호
    • /
    • pp.567-569
    • /
    • 2005
  • NARX(Nonlinear AutoRegressive with eXogenous input) neural network was used for prediction of nuclear reactor behavior which was influenced by control rods in short-term period and also by the concentration of xenon and boron in long-term period in load following operations. The developed model was designed to predict reactor power, xenon worth and axial offset with different burnup states when control rods and boron were adjusted in load following operations. Data of the Korea Next Generation PWR were collected by ONED94 code. The test results presented exhibit the capability of the NARX neural network model to capture the long term and short term dynamics of the reactor core and the developed model seems to be utilized as a handy tool for the use of a plant simulation.

Prediction of RC structure service life from field long term chloride diffusion

  • Safehian, Majid;Ramezanianpour, Ali Akbar
    • Computers and Concrete
    • /
    • 제15권4호
    • /
    • pp.589-606
    • /
    • 2015
  • It is well-documented that the major deterioration of coastal RC structures is chloride-induced corrosion. Therefore, regional investigations are necessary for durability based design and evaluation of the proposed service life prdiction models. In this paper, four reinforced concrete jetties exposed to severe marine environment were monitored to assess the long term chloride penetration at 6 months to 96 months. Also, some accelerated durability tests were performed on standard samples in laboratory. As a result, two time-dependent equations are proposed for basic parameters of chloride diffusion into concrete and then the corrosion initiation time is estimated by a developed probabilistic service life model Also, two famous service life prediction models are compared using chloride profiles obtained from structures after about 40 years in the tidal exposure conditions. The results confirm that the influence of concrete quality on diffusion coefficients is related to the concrete pore structure and the time dependence is due to chemical reactions of sea water ions with hydration products which lead a reduction in pore structure. Also, proper attention to the durability properties of concrete may extend the service life of marine structures greater than fifty years, even in harsh environments.

Rapid prediction of long-term deflections in composite frames

  • Pendharkar, Umesh;Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Steel and Composite Structures
    • /
    • 제18권3호
    • /
    • pp.547-563
    • /
    • 2015
  • Deflection in a beam of a composite frame is a serviceability design criterion. This paper presents a methodology for rapid prediction of long-term mid-span deflections of beams in composite frames subjected to service load. Neural networks have been developed to predict the inelastic mid-span deflections in beams of frames (typically for 20 years, considering cracking, and time effects, i.e., creep and shrinkage in concrete) from the elastic moments and elastic mid-span deflections (neglecting cracking, and time effects). These models can be used for frames with any number of bays and stories. The training, validating, and testing data sets for the neural networks are generated using a hybrid analytical-numerical procedure of analysis. Multilayered feed-forward networks have been developed using sigmoid function as an activation function and the back propagation-learning algorithm for training. The proposed neural networks are validated for an example frame of different number of spans and stories and the errors are shown to be small. Sensitivity studies are carried out using the developed neural networks. These studies show the influence of variations of input parameters on the output parameter. The neural networks can be used in every day design as they enable rapid prediction of inelastic mid-span deflections with reasonable accuracy for practical purposes and require computational effort which is a fraction of that required for the available methods.

Design wind speed prediction suitable for different parent sample distributions

  • Zhao, Lin;Hu, Xiaonong;Ge, Yaojun
    • Wind and Structures
    • /
    • 제33권6호
    • /
    • pp.423-435
    • /
    • 2021
  • Although existing algorithms can predict wind speed using historical observation data, for engineering feasibility, most use moment methods and probability density functions to estimate fitted parameters. However, extreme wind speed prediction accuracy for long-term return periods is not always dependent on how the optimized frequency distribution curves are obtained; long-term return periods emphasize general distribution effects rather than marginal distributions, which are closely related to potential extreme values. Moreover, there are different wind speed parent sample types; how to theoretically select the proper extreme value distribution is uncertain. The influence of different sampling time intervals has not been evaluated in the fitting process. To overcome these shortcomings, updated steps are introduced, involving parameter sensitivity analysis for different sampling time intervals. The extreme value prediction accuracy of unknown parent samples is also discussed. Probability analysis of mean wind is combined with estimation of the probability plot correlation coefficient and the maximum likelihood method; an iterative estimation algorithm is proposed. With the updated steps and comparison using a Monte Carlo simulation, a fitting policy suitable for different parent distributions is proposed; its feasibility is demonstrated in extreme wind speed evaluations at Longhua and Chuansha meteorological stations in Shanghai, China.

Ship Motion-Based Prediction of Damage Locations Using Bidirectional Long Short-Term Memory

  • Son, Hye-young;Kim, Gi-yong;Kang, Hee-jin;Choi, Jin;Lee, Dong-kon;Shin, Sung-chul
    • 한국해양공학회지
    • /
    • 제36권5호
    • /
    • pp.295-302
    • /
    • 2022
  • The initial response to a marine accident can play a key role to minimize the accident. Therefore, various decision support systems have been developed using sensors, simulations, and active response equipment. In this study, we developed an algorithm to predict damage locations using ship motion data with bidirectional long short-term memory (BiLSTM), a type of recurrent neural network. To reflect the low frequency ship motion characteristics, 200 time-series data collected for 100 s were considered as input values. Heave, roll, and pitch were used as features for the prediction model. The F1-score of the BiLSTM model was 0.92; this was an improvement over the F1-score of 0.90 of a prior model. Furthermore, 53 of 75 locations of damage had an F1-score above 0.90. The model predicted the damage location with high accuracy, allowing for a quick initial response even if the ship did not have flood sensors. The model can be used as input data with high accuracy for a real-time progressive flooding simulator on board.

Strategy to coordinate actions through a plant parameter prediction model during startup operation of a nuclear power plant

  • Jae Min Kim;Junyong Bae;Seung Jun Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.839-849
    • /
    • 2023
  • The development of automation technology to reduce human error by minimizing human intervention is accelerating with artificial intelligence and big data processing technology, even in the nuclear field. Among nuclear power plant operation modes, the startup and shutdown operations are still performed manually and thus have the potential for human error. As part of the development of an autonomous operation system for startup operation, this paper proposes an action coordinating strategy to obtain the optimal actions. The lower level of the system consists of operating blocks that are created by analyzing the operation tasks to achieve local goals through soft actor-critic algorithms. However, when multiple agents try to perform conflicting actions, a method is needed to coordinate them, and for this, an action coordination strategy was developed in this work as the upper level of the system. Three quantification methods were compared and evaluated based on the future plant state predicted by plant parameter prediction models using long short-term memory networks. Results confirmed that the optimal action to satisfy the limiting conditions for operation can be selected by coordinating the action sets. It is expected that this methodology can be generalized through future research.

LSTM과 Bi-LSTM을 사용한 비주기성 시계열 데이터 예측 성능 비교 분석 (Comparative Analysis of Prediction Performance of Aperiodic Time Series Data using LSTM and Bi-LSTM)

  • 이주형;홍준기
    • 한국빅데이터학회지
    • /
    • 제7권2호
    • /
    • pp.217-224
    • /
    • 2022
  • 온라인 쇼핑의 대중화로 인해 많은 의류 상품이 온라인 쇼핑을 통해 소비된다. 의류 상품은 다른 상품과 달리 판매량이 일정하지 않고 날씨의 변화에 따라 판매량이 변화하는 특징이 있다. 따라서 의류 상품의 머신 러닝을 적용한 효율적인 재고 관리 시스템에 대한 연구는 매우 중요하다. 본 논문에서는 의류 업체 'A'로부터 실제 의류 상품 판매량 데이터를 수집하고 판매량 데이터와 같은 시계열 데이터의 예측에 많이 활용되는 LSTM(Long Short-Term Memory)과 Bidirectional-LSTM(Bi-LSTM)의 학습에 사용하여 LSTM과 Bi-LSTM의 판매량 예측 효율을 비교 분석하였다. 시뮬레이션 결과를 통해 LSTM 기술 대비 Bi-LSTM은 시뮬레이션 시간은 더 많이 소요되지만 의류 상품 판매량 데이터와 같은 비주기성 시계열 데이터의 예측 정확도가 동일하다는 것을 확인하였다.