• Title/Summary/Keyword: long-term prediction

Search Result 929, Processing Time 0.031 seconds

Development of Deep-Learning-Based Models for Predicting Groundwater Levels in the Middle-Jeju Watershed, Jeju Island (딥러닝 기법을 이용한 제주도 중제주수역 지하수위 예측 모델개발)

  • Park, Jaesung;Jeong, Jiho;Jeong, Jina;Kim, Ki-Hong;Shin, Jaehyeon;Lee, Dongyeop;Jeong, Saebom
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.697-723
    • /
    • 2022
  • Data-driven models to predict groundwater levels 30 days in advance were developed for 12 groundwater monitoring stations in the middle-Jeju watershed, Jeju Island. Stacked long short-term memory (stacked-LSTM), a deep learning technique suitable for time series forecasting, was used for model development. Daily time series data from 2001 to 2022 for precipitation, groundwater usage amount, and groundwater level were considered. Various models were proposed that used different combinations of the input data types and varying lengths of previous time series data for each input variable. A general procedure for deep-learning-based model development is suggested based on consideration of the comparative validation results of the tested models. A model using precipitation, groundwater usage amount, and previous groundwater level data as input variables outperformed any model neglecting one or more of these data categories. Using extended sequences of these past data improved the predictions, possibly owing to the long delay time between precipitation and groundwater recharge, which results from the deep groundwater level in Jeju Island. However, limiting the range of considered groundwater usage data that significantly affected the groundwater level fluctuation (rather than using all the groundwater usage data) improved the performance of the predictive model. The developed models can predict the future groundwater level based on the current amount of precipitation and groundwater use. Therefore, the models provide information on the soundness of the aquifer system, which will help to prepare management plans to maintain appropriate groundwater quantities.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

Topographical Change Monitoring of the Sandbar and Estimation of Suspended Solid Flux in the Nakdong River Estuary - Focused on Jinudo - (낙동강 하구역 사주지형 변동과 부유사(SS) 수송량 산정 - 진우도를 중심으로 -)

  • Lee, I.C.;Lim, S.P.;Yoon, H.S.;Kim, H.T.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.2
    • /
    • pp.70-77
    • /
    • 2008
  • In this study, to establish countermeasure from marine casualties as a basic study fur long-term prediction of topographical change around Jinudo in the Nakdong river estuary, spatio-temporal topographical change monitoring was carried out. Also, in order to estimate the deposition variations concerning SS (Suspended Solid) flux which moved at St.S1 during neap and spring tide, respectively. From the topographical monitoring, it was found that the annual mean ground level and deposition rate were 141 mm and 0.36 mm/day and all parts except the northern part of Jinudo had the active topographical changes and a tendency to annually deposit. From vertical distribution of SS net fluxes, $SS_{LH}$ (latitudinal SS net flux) during spring tide overall flows average 28 $kg/m^2/hr$ (eastward), and $SS_{LV}$ (longitudinal SS net flux) flows average 11.1 $kg/m^2/hr$ (northward). And, $SS_{LH}$ overall flows average 4.8 $kg/m^2/hr$ (eastward), and $SS_{LV}$ flows average 1.5 $kg/m^2/hr$ (northward) during neap tide similar with spring tide. The depth averaged values of the latitudinal and longitudinal SS net fluxes during spring tide were approximately 6 times higher than those during neap tide. As result of, it was considered that topographical change of southern part of Jinudo was affected by resuspension of bottom sediments due to strong current in bottom layer during flood flow.

  • PDF

Impacts of Two Types of El Niño on Hydrologic Variability in Annual Maximum Flow and Low Flow in the Han River Basin (두 가지 El Niño 형태에 따른 한강 유역의 연최대홍수량 및 저유량의 변화 분석)

  • Kim, Jong-Suk;Yoon, Sun-Kwon;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.10
    • /
    • pp.969-981
    • /
    • 2012
  • In this study, we analysed hydrologic variability in quantity and onset of annual maximum flow and low flow by impacts of the different phases of ENSO (El Ni$\tilde{n}$o Southern Oscillation) over the Han River Basin. The results show that annual maximum flow has increased statistically significant about 48.3% of all over the watershed. The onset of annual maximum flow was delayed in the west of the Han River basins and in the east of the basins was likely to be rapid onset. Also, this study shows that 7-day low flow was deceased statistically significant about 26.0% of the total area in the Han River Basin, and onset of 7-day low flow tends to be faster in the upper-middle basins of the Han River. The onset of annual maximum flow shows similar pattern during the CT (Cold tongue)/WP (Warm-pool) El Ni$\tilde{n}$o years, but annual maximum flow appeared less in 89.0% of all basins during the CT El Ni$\tilde{n}$o years. In addition, the onset of 7-day low flow tended to be faster about 17 days on average during the WP El Ni$\tilde{n}$o years, and 72.7% of the basins show significant increase during the CT El Ni$\tilde{n}$o years. Consequently, it was found that the different phases of CT/WP El Ni$\tilde{n}$o have effects on sensitivity to variability in quantity and onset of water resources over the Han River Basin. We expect that the present diagnostic study on hydrological variability during different phases of ENSO will provide useful information for long-term prediction and water resources management.

Site Monitoring System of Earthquake, Fault and Slope for Nuclear Power Plant Sites (원자력발전소의 부지감시시스템의 운영과 활용)

  • Park, Donghee;Cho, Sung-il;Lee, Yong Hee;Choi, Weon Hack;Lee, Dong Hun;Kim, Hak-sung
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.185-201
    • /
    • 2018
  • Nuclear power plants(NPP) are constructed and operated to ensure safety against natural disasters and man-made disasters in all processes including site selection, site survey, design, construction, and operation. This paper will introduce a series of efforts conducted in Korea Hydro and Nuclear Power Co. Ltd., to assure the safety of nuclear power plant against earthquakes and other natural hazards. In particular, the present status of the earthquake, fault, and slope safety monitoring system for nuclear power plants is introduced. A earthquake observatory network for the NPP sites has been built up for nuclear safety and providing adequate seismic design standards for NPP sites by monitoring seismicity in and around NPPs since 1999. The Eupcheon Fault Monitoring System, composed of a strainmeter, seismometer, creepmeter, Global Positioning System, and groundwater meter, was installed to assess the safety of the Wolsung Nuclear Power Plant against earthquakes by monitoring the short- and long-term behavioral characteristics of the Eupcheon fault. Through the analysis of measured data, it was verified that the Eupcheon fault is a relatively stable fault that is not affected by earthquakes occurring around the southeastern part of the Korean peninsula. In addition, it was confirmed that the fault monitoring system could be very useful for seismic safety analysis and earthquake prediction study on the fault. K-SLOPE System for systematic slope monitoring was successfully developed for monitoring of the slope at nuclear power plants. Several kinds of monitoring devices including an inclinometer, tiltmeter, tension-wire, and precipitation gauge were installed on the NPP slope. A macro deformation analysis using terrestrial LiDAR (Light Detection And Ranging) was performed for overall slope deformation evaluation.

정지궤도 통신해양기상위성의 기상분야 요구사항에 관하여

  • Ahn, Myung-Hwan;Kim, Kum-Lan
    • Atmosphere
    • /
    • v.12 no.4
    • /
    • pp.20-42
    • /
    • 2002
  • Based on the "Mid to Long Term Plan for Space Development", a project to launch COMeS (Communication, Oceanography, and Meteorological Satellite) into the geostationary orbit is undergoing. Accordingly, KMA (Korea Meteorological Administration) has defined the meteorological missions and prepared the user requirements to fulfill the missions. To make a realistic user requirements, we prepared a first draft based on the ideal meteorological products derivable from a geostationary platform and sent the RFI (request for information) to the sensor manufacturers. Based on the responses to the RFI and other considerations, we revised the user requirement to be a realistic plan for the 2008 launch of the satellite. This manuscript introduces the revised user requirements briefly. The major mission defined in the revised user requirement is the augmentation of the detection and prediction ability of the severe weather phenomena, especially around the Korean Peninsula. The required payload is an enhanced Imager, which includes the major observation channels of the current geostationary sounder. To derive the required meteorological products from the Imager, at least 12 channels are required with the optimum of 16 channels. The minimum 12 channels are 6 wavelength bands used for current geostationary satellite, and additional channels in two visible bands, a near infrared band, two water vapor bands and one ozone absorption band. From these enhanced channel observation, we are going to derive and utilize the information of water vapor, stability index, wind field, and analysis of special weather phenomena such as the yellow sand event in addition to the standard derived products from the current geostationary Imager data. For a better temporal coverage, the Imager is required to acquire the full disk data within 15 minutes and to have the rapid scan mode for the limited area coverage. The required thresholds of spatial resolutions are 1 km and 2 km for visible and infrared channels, respectively, while the target resolutions are 0.5 km and 1 km.

Korean Ocean Forecasting System: Present and Future (한국의 해양예측, 오늘과 내일)

  • Kim, Young Ho;Choi, Byoung-Ju;Lee, Jun-Soo;Byun, Do-Seong;Kang, Kiryong;Kim, Young-Gyu;Cho, Yang-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.2
    • /
    • pp.89-103
    • /
    • 2013
  • National demands for the ocean forecasting system have been increased to support economic activity and national safety including search and rescue, maritime defense, fisheries, port management, leisure activities and marine transportation. Further, the ocean forecasting has been regarded as one of the key components to improve the weather and climate forecasting. Due to the national demands as well as improvement of the technology, the ocean forecasting systems have been established among advanced countries since late 1990. Global Ocean Data Assimilation Experiment (GODAE) significantly contributed to the achievement and world-wide spreading of ocean forecasting systems. Four stages of GODAE were summarized. Goal, vision, development history and research on ocean forecasting system of the advanced countries such as USA, France, UK, Italy, Norway, Australia, Japan, China, who operationally use the systems, were examined and compared. Strategies of the successfully established ocean forecasting systems can be summarized as follows: First, concentration of the national ability is required to establish successful operational ocean forecasting system. Second, newly developed technologies were shared with other countries and they achieved mutual and cooperative development through the international program. Third, each participating organization has devoted to its own task according to its role. In Korean society, demands on the ocean forecasting system have been also extended. Present status on development of the ocean forecasting system and long-term plan of KMA (Korea Meteorological Administration), KHOA (Korea Hydrographic and Oceanographic Administration), NFRDI (National Fisheries Research & Development Institute), ADD (Agency for Defense Development) were surveyed. From the history of the pre-established systems in other countries, the cooperation among the relevant Korean organizations is essential to establish the accurate and successful ocean forecasting system, and they can form a consortium. Through the cooperation, we can (1) set up high-quality ocean forecasting models and systems, (2) efficiently invest and distribute financial resources without duplicate investment, (3) overcome lack of manpower for the development. At present stage, it is strongly requested to concentrate national resources on developing a large-scale operational Korea Ocean Forecasting System which can produce open boundary and initial conditions for local ocean and climate forecasting models. Once the system is established, each organization can modify the system for its own specialized purpose. In addition, we can contribute to the international ocean prediction community.

Spatial Patterns and Temporal Variability of the Haines Index related to the Wildland Fire Growth Potential over the Korean Peninsula (한반도 산불 확장 잠재도와 관련된 Haines Index의 시.공간적 특징)

  • Choi Cwang-Yong;Kim Jun-Su;Won Myoung-Soo
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.2 s.113
    • /
    • pp.168-187
    • /
    • 2006
  • Windy meteorological conditions and dried fire fuels due to higher atmospheric instability and dryness in the lower troposphere can exacerbate fire controls and result in more losses of forest resources and residential properties due to enhanced large wildland fires. Long-term (1979-2005) climatology of the Haines Index reconstructed in this study reveals that spatial patterns and intra-annual variability of the atmospheric instability and dryness in the lower troposphere affect the frequency of wildland fire incidences over the Korean Peninsula. Exponential regression models verify that daily high Haines Index and its monthly frequency has statistically significant correlations with the frequency of the wildland fire occurrences during the fire season (December-April) in South Korea. According to the climatic maps of the Haines Index created by the Geographic Information System (GIS) using the Digital Elevation Model (DEM), the lowlands below 500m from the mean sea level in the northwestern regions of the Korean Peninsula demonstrates the high frequency of the Haines Index equal to or greater than five in April and May. The annual frequency of the high Haines Index represents an increasing trend across the Korean Peninsula since the mid-1990s, particularly in Gyeongsangbuk-do and along the eastern coastal areas. The composite of synoptic weather maps at 500hPa for extreme events, in which the high Haines Index lasted for several days consecutively, illustrates that the cold low pressure system developed around the Sea of Okhotsk in the extreme event period enhances the pressure gradient and westerly wind speed over the Korean Peninsula. These results demonstrate the need for further consideration of the spatial-temporal characteristics of vertical atmospheric components, such as atmospheric instability and dryness, in the current Korean fire prediction system.

A Study on the Volatility of Global Stock Markets using Markov Regime Switching model (마코브국면전환모형을 이용한 글로벌 주식시장의 변동성에 대한 연구)

  • Lee, Kyung-Hee;Kim, Kyung-Soo
    • Management & Information Systems Review
    • /
    • v.34 no.3
    • /
    • pp.17-39
    • /
    • 2015
  • This study examined the structural changes and volatility in the global stock markets using a Markov Regime Switching ARCH model developed by the Hamilton and Susmel (1994). Firstly, the US, Italy and Ireland showed that variance in the high volatility regime was more than five times that in the low volatility, while Korea, Russia, India, and Greece exhibited that variance in the high volatility regime was increased more than eight times that in the low. On average, a jump from regime 1 to regime 2 implied roughly three times increased in risk, while the risk during regime 3 was up to almost thirteen times than during regime 1 over the study period. And Korea, the US, India, Italy showed ARCH(1) and ARCH(2) effects, leverage and asymmetric effects. Secondly, 278 days were estimated in the persistence of low volatility regime, indicating that the mean transition probability between volatilities exhibited the highest long-term persistence in Korea. Thirdly, the coefficients appeared to be unstable structural changes and volatility for the stock markets in Chow tests during the Asian, Global and European financial crisis. In addition, 1-Step prediction error tests showed that stock markets were unstable during the Asian crisis of 1997-1998 except for Russia, and the Global crisis of 2007-2008 except for Korea and the European crisis of 2010-2011 except for Korea, the US, Russia and India. N-Step tests exhibited that most of stock markets were unstable during the Asian and Global crisis. There was little change in the Asian crisis in CUSUM tests, while stock markets were stable until the late 2000s except for some countries. Also there were stable and unstable stock markets mixed across countries in CUSUMSQ test during the crises. Fourthly, I confirmed a close relevance of the volatility between Korea and other countries in the stock markets through the likelihood ratio tests. Accordingly, I have identified the episode or events that generated the high volatility in the stock markets for the financial crisis, and for all seven stock markets the significant switch between the volatility regimes implied a considerable change in the market risk. It appeared that the high stock market volatility was related with business recession at the beginning in 1990s. By closely examining the history of political and economical events in the global countries, I found that the results of Lamoureux and Lastrapes (1990) were consistent with those of this paper, indicating there were the structural changes and volatility during the crises and specificly every high volatility regime in SWARCH-L(3,2) student t-model was accompanied by some important policy changes or financial crises in countries or other critical events in the international economy. The sophisticated nonlinear models are needed to further analysis.

  • PDF

Factors Predicting the Development of Radiation Pneumonitis in the Patients Receiving Radiation Therapy for Lung Cancer (방사선 치료를 시행 받은 폐암 환자에서 방사선 폐렴의 발생에 관한 예측 인자)

  • An, Jin Yong;Lee, Yun Sun;Kwon, Sun Jung;Park, Hee Sun;Jung, Sung Soo;Kim, Jin whan;Kim, Ju Ock;Jo, Moon Jun;Kim, Sun Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.1
    • /
    • pp.40-50
    • /
    • 2004
  • Background : Radiation pneumonitis(RP) is the major serious complication of thoracic irradiation treatment. In this study, we attempted to retrospectively evaluate the long-term prognosis of patients who experienced acute RP and to identify factor that might allow prediction of RP. Methods : Of the 114 lung cancer patients who underwent thoracic radiotherapy between December 2000 and December 2002, We performed analysis using a database of 90 patients who were capable of being evaluated. Results : Of the 44 patients(48.9%) who experienced clinical RP in this study, the RP was mild in 33(36.6%) and severe in 11(12.3%). All of severe RP were treated with corticosteroids. The median starting corticosteroids dose was 34 mg(30~40) and median treatment duration was 68 days(8~97). The median survival time of the 11 patients who experienced severe RP was significantly poorer than the mild RP group. (p=0.046) The higher total radiation dose(${\geq}60Gy$) was significantly associated with developing in RP.(p=0.001) The incidence of RP did not correlate with any of the ECOG performance, pulmonary function test, age, cell type, history of smoking, radiotherapy combined with chemotherapy, once-daily radiotherapy dose fraction. Also, serum albumin level, uric acid level at onset of RP did not influence the risk of severe RP in our study. Conclusion : Only the higher total radiation dose(${\geq}60Gy$) was a significant risk factor predictive of RP. Also severe RP was an adverse prognostic factor.