• Title/Summary/Keyword: long-term monitoring system

Search Result 455, Processing Time 0.03 seconds

Development of a Real-Time Water Quality Monitoring System using Coastal Passenger Ships and PCS Telemetry

  • Jin, Jae-Youll;Park, Jin-Soon;Lee, Jong-Kuk;Park, Kwang-Soon;Lee, Dong-Young;Yum, Ki-Dai
    • Ocean and Polar Research
    • /
    • v.21 no.2
    • /
    • pp.117-126
    • /
    • 1999
  • To meet increasing needs for environmentally sustainable management of coastal area, there has been compelling pressure to establish a cost-effective and long-term coastal water quality (CWQ) monitoring system. A remote CWQ monitoring system, STAMP, has been developed and is in operation along the route between Kyema harbor and Anma Island in the southwestern coastal area of Korea. STAMP uses a PCS phone as a telemetry unit to transmit acquired data for monitoring general water quality parameters, and a routinely operating coastal passenger ship or car ferry. STAMP has various merits of low-cost operations; long-term monitoring with secure instrumentation; and stable real-time telemetry of acquired data with-out the loss and noise. It is expected that the system will serve as a very useful tool in the CWQ managing programs of Korea taking the advantage of many coastal passenger ships in various routes including the ships departing from the coastal industrial cities. The acquired data compiled on suspended surface sediment concentrations (SSSC) will be also valuably helpful in understanding the sediment budget across the routes of the vessel.

  • PDF

Wireless sensor networks for long-term structural health monitoring

  • Meyer, Jonas;Bischoff, Reinhard;Feltrin, Glauco;Motavalli, Masoud
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.263-275
    • /
    • 2010
  • In the last decade, wireless sensor networks have emerged as a promising technology that could accelerate progress in the field of structural monitoring. The main advantages of wireless sensor networks compared to conventional monitoring technologies are fast deployment, small interference with the surroundings, self-organization, flexibility and scalability. These features could enable mass application of monitoring systems, even on smaller structures. However, since wireless sensor network nodes are battery powered and data communication is the most energy consuming task, transferring all the acquired raw data through the network would dramatically limit system lifetime. Hence, data reduction has to be achieved at the node level in order to meet the system lifetime requirements of real life applications. The objective of this paper is to discuss some general aspects of data processing and management in monitoring systems based on wireless sensor networks, to present a prototype monitoring system for civil engineering structures, and to illustrate long-term field test results.

Understanding the Groundwater System through the Long-term Monitoring - a case Study of Gwangneung Headwater Catchment (장기모니터링을 통한 지하수계의 이해 - 광릉소유역 사례 연구)

  • Lee, Jae-Min;Woo, Nam-C.
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.4
    • /
    • pp.51-62
    • /
    • 2012
  • Effects of climate change on groundwater system requires understanding the groundwater system in temporal and spatial scales through the long-term monitoring. In this study, the spatio-temporal variations of groundwater were analyzed through the continuous observation of water level, electrical conductivity (EC) and water temperature with automatic data-loggers and sampling in a Gwangneung catchment, Korea, for the four years from 2008 to 2011. Groundwater monitoring were performed at the nest-type wells, MW1 and MW2, located in upsteam and downstream of the catchment, respectively. During the survey period, both the total amount of annual precipitation and the frequency of concentrated rainfall have increased resulting in the elevation of runoff. Water level of MW1 showed no significant fluctuations even during the rainy season, indicating the confined groundwater system. In contrast, that of MW2 showed clear seasonal changes, indicating the unconfined system. The lag-time of temperature at both wells ranged from one to three months depending on the screened depths. Results of chemical analyses indicated that major water compositions were maintained constantly, except for the EC decreases due to the dilution effect. Values of the stable-isotope ratios for oxygen and deuterium were higher at MW2 than MW1, implying the confined system at the upstream area could be locally developed.

A Study on the Long-Term Behavior of UHPC Pedestrian Cable Stayed Bridge (UHPC 보도사장교의 장기거동에 관한 연구)

  • Chin, Won-Jong;Kim, Young-Jin;Choi, Eun-Suk;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.109-110
    • /
    • 2010
  • A pedestrian UHPC cable-stayed bridge(Super Bridge I) of the KICT was completed as a test bed. A long-term monitoring system has been installed on the UHPC bridge in order to acquire all types of long-term data such as strain, acceleration, tension force, wind direction and speed, temperature, etc. This system will provide valuable database enabling to assess the long-term behavior of the UHPC pedestrian hybrid cable-stayed bridge. This database will be exploited for the evaluation of the mechanical characteristics and serviceability of the UHPC members so as to estimate the behavioral features of long-span hybrid cable stayed bridges.

  • PDF

Development of Long-Term Storage Technology for Chinese Cabbage - Physiological Characteristics of Postharvest Freshness in a Cooler with a Monitoring and Control Interface

  • Lim, Ki Taek;Kim, Jangho;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.194-204
    • /
    • 2014
  • Purpose: The aim of this study was to develop long-term storage technology for Chinese cabbage in order to extend the period of availability of freshly harvested products. The scope of the paper deals with the use of a cooler with a remote monitoring and control interface in conjunction with use of packaging film. Methods: A cooler with a real time monitoring system was designed as a low-temperature storage facility to control temperature and relative humidity (RH). The effects of storage in high-density polyethylene (HDPE) plastic boxes, 3% chitosan dipping solution, polypropylene film (PEF) with perforations, and mesh packaging bags on physiological responses were investigated. The optimal storage temperature and humidity for 120 days were below $0.5^{\circ}C$ and 90%, respectively. Physiological and biochemical features of cabbage quality were also analyzed: weight loss, texture, and sugar salinity, chlorophyll, reducing sugar, and vitamin C contents. Results: The cooler with a remote monitoring and control interface could be operated by an HMI program. A $0.5^{\circ}C$ temperature and 90% humidity could be remotely controlled within the cooler for 120 days. Postharvest freshness of Chinese cabbages could be maintained up to 120 days depending on the packaging method and operation of the remote monitoring system. In particular, wrapping the cabbages in PEF with perforations resulted in a less than a 5% deterioration in quality. This study provides evidence for efficient performance of plastic films in minimizing post-harvest deterioration and maintaining overall quality of cabbages stored under precise low-temperature conditions with remote monitoring and a control interface. Conclusions: Packaging with a modified plastic film and storage in a precisely controlled cooler with a remote monitoring and control interface could slow down the physiological factors that cause adverse quality changes and thereby increase the shelf life of Chinese cabbage.

Long-Term Monitoring and Analysis of a Curved Concrete Box-Girder Bridge

  • Lee, Sung-Chil;Feng, Maria Q.;Hong, Seok-Hee;Chung, Young-Soo
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.91-98
    • /
    • 2008
  • Curved bridges are important components of a highway transportation network for connecting local roads and highways, but very few data have been collected in terms of their field performance. This paper presents two-years monitoring and system identification results of a curved concrete box-girder bridge, the West St. On-Ramp, under ambient traffic excitations. The authors permanently installed accelerometers on the bridge from the beginning of the bridge life. From the ambient vibration data sets collected over the two years, the element stiffness correction factors for the columns, the girder, and boundary springs were identified using the back-propagation neural network. The results showed that the element stiffness values were nearly 10% different from the initial design values. It was also observed that the traffic conditions heavily influence the dynamic characteristics of this curved bridge. Furthermore, a probability distribution model of the element stiffness was established for long-term monitoring and analysis of the bridge stiffness change.

An optical fibre monitoring system for evaluating the performance of a soil nailed slope

  • Zhu, Hong-Hu;Ho, Albert N.L.;Yin, Jian-Hua;Sun, H.W.;Pei, Hua-Fu;Hong, Cheng-Yu
    • Smart Structures and Systems
    • /
    • v.9 no.5
    • /
    • pp.393-410
    • /
    • 2012
  • Conventional geotechnical instrumentation techniques available for monitoring of slopes, especially soil-nailed slopes have limitations such as electromagnetic interference, low accuracy, poor longterm reliability and difficulty in mounting a series of strain sensors on a soil nail bar with a small-diameter. This paper presents a slope monitoring system based on fibre Bragg grating (FBG) sensing technology. This monitoring system is designed to perform long-term monitoring of slope movements, strains along soil nails, and other slope reinforcement elements. All these FBG sensors are fabricated and calibrated in laboratory and a trial of this monitoring system has been successfully conducted on a roadside slope in Hong Kong. As part of the slope stability improvement works, soil nails and a toe support soldier-pile wall were constructed. During the slope works, more than 100 FBG sensors were installed on a soil nail, a soldier pile, and an in- place inclinometer. The paper presents the layout and arrangement of the instruments as well as the installation procedures adopted. Monitoring data have been collected since March 2008. This trial has demonstrated the great potential of the optical fibre monitoring system for long-term monitoring of slope performance. The advantages of the slope monitoring system and experience gained in the field implementation are also discussed in the paper.

Long-Term Trend Analyses of Water Qualities in Mangyung Watershed (비모수 통계기법을 이용한 만경강 유역의 장기간 수질 경향 분석)

  • Lee, Hye Won;Park, Seoksoon
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.480-487
    • /
    • 2008
  • Spatial and temporal analyses of water qualities were performed for 11 monitoring stations located in Mangyung watershed in order to analyze the trends of monthly water quality data of Biochemical Oxygen Demand (BOD), Total Nitrogen (TN) and Total Phosphorus (TP) measured from 1995 to 2004. The long-term trends were analyzed utilizing Seasonal Mann-Kendall test, LOWESS and three-dimensional graphs were constructed with respect to distance and time. The graph can visualize spatial and temporal trend of the long-term water quality in a large river system. The results of trend analysis indicated that water quality of BOD and TN showed the downward trend. This quantitive and quantitative analysis is the useful tool to analyze and display the long-term trend of water quality in a large river system.

Smart Concrete Structures with Optical Fiber Sensors

  • Kim, Ki-Soo
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.109-114
    • /
    • 1999
  • Recently the interest in the safety assessment of civil infrastructures has increased. As bridge structures become large-scale, it is necessary to monitor and maintain the safety of large bridges, which requires smart systems that can make long-term monitoring a reality . Civil engineers have applied monitoring systems to several bridges, such as the New Haeng-Ju Bridge and Riverside Urban Highway Bridge, but these applications have some problems with the sensors for long-term measurement, setup techniques for the bridge monitoring system and the assessment of measured data. In the present study, an optical fiber sensor smart system was tested and confirmed in laboratory tests on the concrete members. By Attaching optical fiber sensors to the structural parts of the Sung-San Bridge, the bridge load test was measured. These smart concrete structure systems can be applied to bridges and the load capacity of the bridge can assessed.

  • PDF

Introduction of the Structural Health Monitoring System with Fiber Optic Sensor & USN for Subway Station (광섬유센서 및 USN 기술의 지하역사 구조건전성 감시시스템 적용방안 연구)

  • Shin, Jeong-Ryol;Ahn, Tae-Ki;Lee, Woo-Dong;Han, Seok-Yoon
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.224-231
    • /
    • 2008
  • A subway or an underground railway is one of the representative public transportations which lots of people take everyday. Then, subway station, which is also one of the very important public civil infrastructures, generally services for a long period of time. During the service time of stations, they are easily damaged from environmental corrosion, material aging, fatigue, and the coupling effects with long-term loads and extreme loads. Recently, civil construction work on the places near station often creates lots of damages to the station. As these damages accumulate, the performance of station degenerates due to the above factors. They would inevitably reduce the resisting capacity of station against the disaster; even they bring into the collapse of stations with the structural failure under long-term loads and extreme loads. And, if disaster such as earthquake, fire, etc. happens, it causes huge property damage and threatens the human lives. Because of these above reasons, the structural health monitoring system need to be developed for ensuring the safety of station. In this paper, the development directions of the structural health monitoring system with fiber optic sensor and USN for subway station are briefly described.

  • PDF