Current Industrial and Technological Trends in Aerospace
/
v.8
no.1
/
pp.12-22
/
2010
The great recession which caused by financial crisis made steep rise of oil price and the serious problems of the aircraft industry. High oil price increases operating cost and the recession decreases air traffic. After a period of high book order and delivery from global economic recovery, the aircraft order fell down suddenly. Also the Aircraft price and lease rate deceased and the MRO market is reduced, too. But, the air cargo and passenger increase again since late of 2009. So, it is difficult to predict the market movement, most of the forecasters agreed that the air traffic and aircraft demand will grow gradually in long term with the growth of emerging markets like China, India and Africa. And more efficient, safe and clean aircraft is needed and will need in the market.
KSCE Journal of Civil and Environmental Engineering Research
/
v.2
no.2
/
pp.1-10
/
1982
Presently, most of rail stations are situated on the surface of dowl1town and thus result in heavy traffic congestion and inefficient use of land. This paper analyzes the impact of alternative locations of station On urban traffic patterns by simulating transportation systems, of Busan city. Since location of station has long-term effects on land use and transportation, 20 years forecast of land use change, trip generation, trip distribution, modal split and network assignment was performed for each alternative, and aggregate Impacts On passenger-km and passenger-hour were computed. The result indicated that Bujeon is the most desirable location of station in terms of traffic movement, compared to the alternative locations of Sasang and existing station. Relocation of rail station, however, should be decided with broader analysis including other aspects, such as urban development, environment, construction and operating costs, etc.
Journal of Korean Society for Atmospheric Environment
/
v.30
no.2
/
pp.139-149
/
2014
A new technique, namely the combination of satellite and trajectory analysis (CSTA), for exploring the spatio-temporal distribution information of volcanic ash plume (VAP) from volcanic eruption. CSTA uses the satellite derived ash property data and a matching forward-trajectories, which can generate airmass history pattern for specific VAP. In detail, VAP properties such as ash mask, aerosol optical thickness at 11 ${\mu}m$ ($AOT_{11}$), ash layer height, and effective radius from the Moderate Resolution Imaging Spectro-radiometer (MODIS) satellite were retrieved, and used to estimate the possibility of the ash forecasting in local atmosphere near volcano. The use of CSTA for Iceland's Eyjafjallaj$\ddot{o}$kull volcano erupted in May 2010 reveals remarkable spatial coherence for some VAP source-transport pattern. The CSTA forecasted points of VAP are consistent with the area of MODIS retrieved VAP. The success rate of the 24 hour VAP forecast result was about 77.8% in this study. Finally, the use of CSTA could provide promising results for VAP monitoring and forecasting by satellite observation data and verification with long term measurement dataset.
Restructuring of electricity industry is going on for the purpose of introducing competition and after separation of generation and retail business and introduction of competition, substantial change is expected in overall electric power system. In other words, DSM projects are divided with public projects and private projects. Particularly for public project, it is essential to evaluate the DSM volumes by program. This paper tries to derive the ways for achieving the necessary DSM goal in the electricity industry in Korea. First of all, by analyzing the load in Korea, we forecast the standard demand and estimate the technological potentials of each program in considering DSM technological indicators. Moreover, by using economic analysis by program, we estimate economic potentials and finally, we estimate the potentials by program in considering the DSM policy. We estimate the potentials by using random method because application methodology and procedures by program are not established until now, which leads to not obtaining transparency for implementation effect by program. Therefore, this paper estimates the future potentials of DSM projects by using the logical and systematic analytic method and establishing database for DSM basic indicator. The DSM goals estimated by this method will be reflected to mid/long term nation-wide resource planning, which will mitigate anticipated power supply shortage and be applied to derive desirable energy demand/supply structure.
The economical property of a shipping enterprise, as well as other transportation industries, is determined by the difference between the freight earned and expense paid. This study can be regarded as a division of optimizing ship allocation to routes under the integrated port transport system. Fleet planning and scheduling require complicated allocations of cargoes to ships and ships to routes in order to optimize the given criterion function for a given forecast period. This paper deals with the optimum ship allocation problem minimizing the operating cost of ships in a shipping company. Optimum fleet operating for a shipping enterprise is very important, since the marine transportation is a form of large quantity transport requiring long-term period, and there is a strong possibility to bring about large amount of loss in operation resulting from a faulty ship allocation. Where there are more than one loading and discharging ports, and a variety of ship's ability in speed, capacity, operating cost etc., and when the amount of commodities to be transported between the ports has been determined, then the ship's schedule minimizing the operating cost while satisfying the transport demand within the predetermined period will be made up. First of all a formula of ship allocation problems will be established and then will be constructed to solve an example by the Integer Programming application after consideration of the ship's ability, supply and demand of commodity, amount of commodity to be transported, operating costs of each ship etc. This study will give good information on deciding intention for a ship oprator or owner to meet the computerization current with shiping management.
Wind speed forecasting is critical for a variety of engineering tasks, such as wind energy harvesting, scheduling of a wind power system, and dynamic control of structures (e.g., wind turbine, bridge, and building). Wind speed, which has characteristics of random, nonlinear and uncertainty, is difficult to forecast. Nowadays, machine learning approaches (generalized regression neural network (GRNN), back propagation neural network (BPNN), and extreme learning machine (ELM)) are widely used for wind speed forecasting. In this study, two schemes are proposed to improve the forecasting performance of machine learning approaches. One is that optimization algorithms, i.e., cross validation (CV), genetic algorithm (GA), and particle swarm optimization (PSO), are used to automatically find the optimal model parameters. The other is that the combination of different machine learning methods is proposed by finite mixture (FM) method. Specifically, CV-GRNN, GA-BPNN, PSO-ELM belong to optimization algorithm-assisted machine learning approaches, and FM is a hybrid machine learning approach consisting of GRNN, BPNN, and ELM. The effectiveness of these machine learning methods in wind speed forecasting are fully investigated by one-year field monitoring data, and their performance is comprehensively compared.
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.97-97
/
2016
가뭄은 홍수와 더불어 매우 심각한 자연재해이며, 그 특성상 광역적이고 장기간 발생함에 따라 구체적인 발생시점, 규모, 범위 등을 규명하기가 어렵다. 다만, 적시에 경보해야 하는 홍수와 달리 진행속도가 느리고 시간적으로 대처할 여유가 있어 진행중 일지라도 초기에 감지한다면 그 피해를 최소화할 수 있다. 미국 등 수문기상 선진국에서는 수문기상 장기예보자료를 활용한 가뭄전망정보 생산 및 제공하고 있으며, 활용성을 검증한바 있다. 국내의 경우 기상청에서는 대기-해양-해빙 모델을 접합한 GloSea5 (Global Seasonal forecasting system version 5) 모델을 도입하였으며, 가뭄예보를 목적으로 장기예보자료 기반의 가뭄전망정보 생산체계를 구축한 바 있다(기상청, 2012; 손경환 등, 2015). 본 연구에서는 장기예보자료 기반의 수문기상 전망정보를 이용하여 2014-15년 가뭄사례에 대한 가뭄감시 및 전망정보를 생산 및 평가하였다. 수문기상전망 정보는 기상청 현업예보 모델인 GloSea5와 지면모델을 이용하여 생산하였으며, 관측자료와 수문전망정보 기반의 가뭄지수를 산정하였다. 매스컴 및 언론 보도 자료부터 2014-15년 가뭄에 대한 행정구역별 피해사례를 수집하였으며, 이를 기반으로 시계열, 지역별 및 통계적(CC, RMSE) 분석을 이용하여 선행시간별 정확도를 평가하였다. 1개월 및 2개월 전망정보의 정확도가 높음을 확인하였으며, 가뭄심도가 심각한 시기의 가뭄상황을 적절히 재현하는 것으로 나타났다.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.147-147
/
2018
In this article, we use an open source software library: TensorFlow, developed for the purposes of conducting very complex machine learning and deep neural network applications. However, the system is general enough to be applicable in a wide variety of other domains as well. The proposed model based on a deep neural network model, LSTM (Long Short-Term Memory) to predict the river water level at Okcheon Station of the Guem River without utilization of rainfall - forecast information. For LSTM modeling, the input data is hourly water level data for 15 years from 2002 to 2016 at 4 stations includes 3 upstream stations (Sutong, Hotan, and Songcheon) and the forecasting-target station (Okcheon). The data are subdivided into three purposes: a training data set, a testing data set and a validation data set. The model was formulated to predict Okcheon Station water level for many cases from 3 hours to 12 hours of lead time. Although the model does not require many input data such as climate, geography, land-use for rainfall-runoff simulation, the prediction is very stable and reliable up to 9 hours of lead time with the Nash - Sutcliffe efficiency (NSE) is higher than 0.90 and the root mean square error (RMSE) is lower than 12cm. The result indicated that the method is able to produce the river water level time series and be applicable to the practical flood forecasting instead of hydrologic modeling approaches.
Kim, Ki-Bum;Park, Joon;Seo, Jee-Won;Yu, Young-Jun;Hyun, In-Hwan;Koo, Ja-Yong
Environmental Engineering Research
/
v.23
no.4
/
pp.406-419
/
2018
In planning public service systems such as waterworks, the design population is very important factor. Owing to the limitations of the indirect method, two new models, which take into consideration urban characteristics, were developed to accurately predict external migration rate (EMR), which is an essential component in estimating reliably the design population. The root mean square error (RMSE) between the model values and observed values were 10.12 and 15.58 for the metropolitan cities and counties respectively and were lower compared to RMSE values of 27.31 and 28.79 obtained by the indirect method. Thus, the developed models provide a more accurate estimate of EMR than the indirect method. In addition, the major influencing factors for external migration in counties were development type, ageing index, number of businesses. On the other hand, the major influencing migration factors for cities were project scale, distance to city center, manufacturing size, population growth rate and residential environment. Future medium and long-term studies would be done to identify emerging trends to appropriately inform policy making.
Hussain, Syed Nazir;Aziz, Azlan Abd;Hossen, Md. Jakir;Aziz, Nor Azlina Ab;Murthy, G. Ramana;Mustakim, Fajaruddin Bin
Journal of Information Processing Systems
/
v.18
no.1
/
pp.115-129
/
2022
Adopting Internet of Things (IoT)-based technologies in smart homes helps users analyze home appliances electricity consumption for better overall cost monitoring. The IoT application like smart home system (SHS) could suffer from large missing values gaps due to several factors such as security attacks, sensor faults, or connection errors. In this paper, a novel framework has been proposed to predict large gaps of missing values from the SHS home appliances electricity consumption time-series datasets. The framework follows a series of steps to detect, predict and reconstruct the input time-series datasets of missing values. A hybrid convolutional neural network-long short term memory (CNN-LSTM) neural network used to forecast large missing values gaps. A comparative experiment has been conducted to evaluate the performance of hybrid CNN-LSTM with its single variant CNN and LSTM in forecasting missing values. The experimental results indicate a performance superiority of the CNN-LSTM model over the single CNN and LSTM neural networks.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.