• 제목/요약/키워드: long-large tunnel

검색결과 113건 처리시간 0.029초

Use of large-scale shake table tests to assess the seismic response of a tunnel embedded in compacted sand

  • Zhou, Hao;Qin, Xiaoyang;Wang, Xinghua;Liang, Yan
    • Earthquakes and Structures
    • /
    • 제15권6호
    • /
    • pp.655-665
    • /
    • 2018
  • Shield tunnels are widely used throughout the world. However, their seismic performance has not been well studied. This paper focuses on the seismic response of a large scale model tunnel in compacted sand. A 9.3 m long, 3.7 m wide and 2.5 m high rigid box was filled with sand so as to simulate the sandy soil surrounding the tunnel. The setup was excited on a large-scale shake table. The model tunnel used was a 1:8 scaled model with a cross-sectional diameter of 900 mm. The effective shock absorbing layer (SAL) on the seismic response of the model tunnel was also investigated. The thickness of the tunnel lining is 60 mm. The earthquake motion recorded from the Kobe earthquake waves was used. The ground motions were scaled to have the same peak accelerations. A total of three peak accelerations were considered (i.e., 0.1 g, 0.2 g and 0.4 g). During the tests, the strain, acceleration and soil pressure on the surface of the tunnel were measured. In order to investigate the effect of shock absorbing layer on the dynamic response of the sand- tunnel system, two tunnel models were set up, one with and one without the shock absorbing layer of foam board were used. The results shows the longitudinal direction acceleration of the model tunnel with a shock absorbing layer were lower than those of model tunnel without the shock absorbing layer, Which indicates that the shock absorbing layer has a beneficial effect on the acceleration reduction. In addition, the shock absorbing layer has influence on the hoop strain and earth pressure of the model tunnel, this the effect of shock absorbing layer to the model tunnel will be discussed in the paper.

대단면 장대터널 공기단축 사례연구 (A Case Study of Minimizing Construction Time in Long and Large Twin Tube Tunnel)

  • 노상림;노승환;이상필;김문호;서정우
    • 터널과지하공간
    • /
    • 제15권3호
    • /
    • pp.177-184
    • /
    • 2005
  • 우리나라의 4차로 도로터널 중 가장 긴 약 4km의 병설 터널인 사패산터널은 환경단체의 민원에 의해 당초보다 약 2년 정도 공사가 지연되어 공사 기간을 단축하기 위한 시공 효율 극대화가 절실히 요구되었다. 본 고는 공기단축을 위해 적용된 사패산 터널의 굴진장 증대 방안, 굴착 공법 개선 방법, 그리고 막장전방 예측 시스템에 대한 사례 연구이다. 터널의 굴진장을 증대시키기 위해 Bulk-emulsion 폭약과 Cylinder-cut 심발패턴이 도입되었고, 터널 굴착 단면의 변경 및 최적의 굴착순서 계획을 통해서 공사기간을 단축할 수 있었다. 또한 대단면 터널의 안전한 시공을 위해서 막장관찰, TSP 탐사 및 고성능 천공장비를 이용한 막장전방 예측 System을 적용하였다.

Taiwan의 Pinglin 터널에서의 Squeezing 거동 분석 사례 연구 (A case study on squeezing behavior of Pinglin tunnel in Taiwan)

  • 윤일중;류기정
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.1358-1365
    • /
    • 2010
  • A case study deals with Squeezing behavior under tunneling. Squeezing stands for large time-dependent convergence during tunnel excavation. Squeezing can occur in both rock and soil as long as the particular combination of induced stresses and material properties pushes some zone around the tunnel beyond the limiting shear stress at which creep starts. Under squeezing rock conditions, If the support installation is delayed the rock mass moves into the tunnel and a stress redistribution takes place around it. On the contrary, if deformation is restrained, squeezing will lead to long-term load build-up of rock support. This paper shows analysis case mutually with monitoring and numerical analysis result of squeezing behavior of Pinglin tunnel in Taiwan.

  • PDF

Mechanism on suppression in vortex-induced vibration of bridge deck with long projecting slab with countermeasures

  • Zhou, Zhiyong;Yang, Ting;Ding, Quanshun;Ge, Yaojun
    • Wind and Structures
    • /
    • 제20권5호
    • /
    • pp.643-660
    • /
    • 2015
  • The wind tunnel test of large-scale sectional model and computational fluid dynamics (CFD) are employed for the purpose of studying the aerodynamic appendices and mechanism on suppression for the vortex-induced vibration (VIV). This paper takes the HongKong-Zhuhai-Macao Bridge as an example to conduct the wind tunnel test of large-scale sectional model. The results of wind tunnel test show that it is the crash barrier that induces the vertical VIV. CFD numerical simulation results show that the distance between the curb and crash barrier is not long enough to accelerate the flow velocity between them, resulting in an approximate stagnation region forming behind those two, where the continuous vortex-shedding occurs, giving rise to the vertical VIV in the end. According to the above, 3 types of wind fairing (trapezoidal, airfoil and smaller airfoil) are proposed to accelerate the flow velocity between the crash barrier and curb in order to avoid the continuous vortex-shedding. Both of the CFD numerical simulation and the velocity field measurement show that the flow velocity of all the measuring points in case of the section with airfoil wind fairing, can be increased greatly compared to the results of original section, and the energy is reduced considerably at the natural frequency, indicating that the wind fairing do accelerate the flow velocity behind the crash barrier. Wind tunnel tests in case of the sections with three different countermeasures mentioned above are conducted and the results compared with the original section show that all the three different countermeasures can be used to control VIV to varying degrees.

Assessment of time-dependent behaviour of rocks on concrete lining in a large cross-section tunnel

  • Mirzaeiabdolyousefi, Majid;Nikkhah, Majid;Zare, Shokrollah
    • Geomechanics and Engineering
    • /
    • 제29권1호
    • /
    • pp.41-51
    • /
    • 2022
  • Tunneling in rocks having the time-dependent behavior, causes some difficulties like tunnel convergence and, as a result, pressure on concrete lining; and so instability on this structure. In this paper the time-dependent behaviour of squeezing phenomenon in a large cross section tunnel was investigated as a case study: Alborz tunnel. Then, time-dependent behaviour of Alborz tunnel was evaluated using FLAC2D based on the finite difference numerical method. A Burger-creep viscoelastic model was used in numerical analysis. Using numerical analysis, the long-time effect of squeezing on lining stability was simulated.This study is done for primary lining (for 2 years) and permanent lining (for 100 years), under squeezing situations. The response of lining is discussed base on Thrust Force-Bending Moment and Thrust Force-Shear Force diagrams analysing. The results determined the importance of consideration of time-dependent behaviour of tunnel that structural forces in concrete lining will grow in consider with time pass and after 70 years can cause instability in creepy rock masses section of tunnel. To show the importance of time-dependent behavior consideration of rocks, elastic and Mohr-Coulomb models are evaluated at the end.

소음 및 진동을 고려한 도심지 내 대단면 수직구 발파설계 사례 -싱가포르 Transmission Cable Tunnel EW2 공구- (Blasting Design for Large Shaft in Urban Area Considering Noise and Vibration -Singapore Transmission Cable Tunnel EW2-)

  • 김지연;이효;김도훈;고태영;이승철
    • 화약ㆍ발파
    • /
    • 제31권1호
    • /
    • pp.55-63
    • /
    • 2013
  • 싱가포르 전력구 터널 건설공사는 싱가포르 내의 전력수요 증가에 대응하기 위해 지하에 400kV의 고압 전기 케이블 등 송전설비 설치를 위한 터널을 건설하는 공사이다. 본 전력구는 총연장 35km의 터널로서 18.5km의 North-South Line의 3개 공구 (NS1, NS2, NS3)와 16.5km의 East-West Line의 3개 공구 (EW1, EW2, EW3)로 나누어 건설된다. 총 6개의 공구 중 SK건설은 EW2 공구와 NS2 공구를 수주하여 현재 시공중이다. 본 프로젝트의 과업 중 지상과 고압 송전 케이블 터널을 연결하는 수직구가 공구당 3~4개소가 있으며, 시공 중에는 TBM 발진용으로 활용된다. 지하 전력구는 싱가포르 내 도심 한복판을 가로질러 건설되며, 수직구 또한 대부분 도심지 내에 있어 수직구 굴착 시 발파 효율의 극대화와 동시에 싱가포르 소음 및 진동 기준을 만족하는 최적의 발파 설계가 요구된다. 싱가포르 전력구 터널 EW2 공구의 수직구 발파는 현지 허용 진동속도기준을 준수하고 국내의 우수한 발파 설계기술을 적용하여 설계되었으며 본 설계를 통하여 국내의 우수한 발파 설계 및 시공 기술을 전파할 좋은 기회가 될 것으로 기대된다.

터널 화재진압시스템 도입에 따른 재난 안전비용의 경제성 분석 연구 (A Study on the Economic Analysis of Disaster Safety Costs by the Water-Bulwark System against the Tunnel Fire)

  • 백충현
    • 대한안전경영과학회지
    • /
    • 제25권2호
    • /
    • pp.129-138
    • /
    • 2023
  • This study attempted to analyze the comparative advantage in terms of disaster safety costs in verifying the effectiveness and economic feasibility of the high-performance water-bulwark system in the pole tunnel, which was recently promoted as a part of the acceleration of vehicles. The tunnel to be analyzed was divided into a short tunnel(Anyang, Cheonggye) and a long tunnel(Suraksan, Sapaesan). As a result, it was analyzed that 25% of the improvement effect would occur if one lane was secured by applying the Water-Bulwark System. It was analyzed that this is because the time value cost, which accounts for a large proportion of the traffic congestion cost of short tunnels and pole tunnels, differs depending on the congestion time and traffic volume, not the length of the tunnel.

공항하부 토사 병설 쉴드터널에서 대구경 강관추진에 의한 횡갱 설계/시공사례 연구 (Case study on design and construction for cross-connection tunnel using large steel pipe thrust method in soil twin shield tunnels underneath airport)

  • 안창윤;박두희
    • 한국터널지하공간학회 논문집
    • /
    • 제23권5호
    • /
    • pp.325-337
    • /
    • 2021
  • 도로와 철도터널에서는 비상시 대피를 위한 시설이 필수적이며, 제연 및 화재 진압을 위한 설비와 승객의 피난 통로가 그것이다. 장대 병설터널에서는 횡갱을 배치하여 화재 발생 반대편 터널로 대피하도록 계획된다. 병설 쉴드터널에서는 횡갱의 시공을 위해 기 시공된 본선터널의 영구 구조물인 세그먼트 라이닝을 철거하여 원지반을 노출하여야 한다. 현대의 대부분의 쉴드TBM이 막장을 격벽으로 차단한 폐쇄형 쉴드TBM임을 감안할 때, 원지반이 노출되는 횡갱의 시공은 쉴드터널의 시공단계에서 위험도가 높은 과정 중 하나이다. 특히, 지하수위 아래의 토사 쉴드터널의 횡갱 시공에서는 세그먼트 철거 및 굴착 중 토사지반의 안정성 확보를 위한 차수 및 굴착공법에 대한 면밀한 검토가 요구된다. 본 사례 연구에서는 토사지반에서 대구경 강관추진을 활용한 횡갱 굴착 공법의 시공 중 유의사항을 소개하고 시공 후 계측결과를 분석하였다. 본 사례 연구에서 소개되는 횡갱 굴착공법은 그라우팅으로 보강된 토사지반에 대구경 강관 추진 후 내부 굴착하는 공법으로써, 두 가지 메커니즘에 의해 토사지반에서 굴착 중 막장의 안정성을 확보한다. 첫 번째는 대구경 강관을 추진하여 막장 전방 토사지반의 전주면을 강관에 의해 선 지보 한다. 두 번째는 대구경 강관 추진으로 내부로 압입된 토사의 Plugging 효과에 의해 막장 전면의 지지효과를 얻을 수 있다. 추진력에 의한 강관의 변형 및 강관의 관통 완료 후 응력발생 계측결과로부터 대구경 강관 추진에 의한 횡갱 굴착공법이 토사지반에서 충분한 시공성과 안정성을 확보함을 확인하였다. 본 사례 연구의 토사 쉴드터널의 횡갱 시공공법은 유사한 현장조건에서 널리 활용될 수 있을 것으로 판단된다.

지진시 지반-터널 상호작용 및 면진 효과 (Soil-Tunnel Interaction and Isolation Effect during Earthquakes)

  • 김대상
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.120-127
    • /
    • 2001
  • Long term earthquake observations at different tunnel sites within a variety of alluvial soil deposits have demonstrated that a circular tunnel is liable to deform in such a way that its two diagonal diameters crossing each other expand and contract alternately. Based on this knowledge, the soil-tunnel interaction and isolation effect for this particular vibration mode is investigated. Interaction effect is considered with the condition of fixed tangential strain between the tunnel and the soil. Isolation effect embodied by covering up the tunnel with isolation materials is discussed as a possible measure for mitigating seismic damage to it. When Poisson`s ratio of isolation material decreases or the shear modulus ratios of the soil to isolation material become large, the isolation effect becomes bigger.

  • PDF

Large eddy simulation of wind loads on a long-span spatial lattice roof

  • Li, Chao;Li, Q.S.;Huang, S.H.;Fu, J.Y.;Xiao, Y.Q.
    • Wind and Structures
    • /
    • 제13권1호
    • /
    • pp.57-82
    • /
    • 2010
  • The 486m-long roof of Shenzhen Citizens Centre is one of the world's longest spatial lattice roof structures. A comprehensive numerical study of wind effects on the long-span structure is presented in this paper. The discretizing and synthesizing of random flow generation technique (DSRFG) recently proposed by two of the authors (Huang and Li 2008) was adopted to produce a spatially correlated turbulent inflow field for the simulation study. The distributions and characteristics of wind loads on the roof were numerically evaluated by Computational Fluid Dynamics (CFD) methods, in which Large Eddy Simulation (LES) and Reynolds Averaged Navier-Stokes Equations (RANS) Model were employed. The main objective of this study is to explore a useful approach for estimations of wind effects on complex curved roof by CFD techniques. In parallel with the numerical investigation, simultaneous pressure measurements on the entire roof were made in a boundary layer wind tunnel to determine mean, fluctuating and peak pressure coefficient distributions, and spectra, spatial correlation coefficients and probability characteristics of pressure fluctuations. Numerical results were then compared with these experimentally determined data for validating the numerical methods. The comparative study demonstrated that the LES integrated with the DSRFG technique could provide satisfactory prediction of wind effects on the long-span roof with complex shape, especially on separation zones along leading eaves where the worst negative wind-induced pressures commonly occur. The recommended LES and inflow turbulence generation technique as well as associated numerical treatments are useful for structural engineers to assess wind effects on a long-span roof at its design stage.