• Title/Summary/Keyword: long span bridge deck

Search Result 119, Processing Time 0.023 seconds

Dynamic analysis of long-span cable-stayed bridges under wind and traffic using aerodynamic coefficients considering aerodynamic interference

  • Han, Wanshui;Liu, Huanju;Wu, Jun;Yuan, Yangguang;Chen, Airong
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.405-430
    • /
    • 2017
  • The aerodynamic characteristics of vehicles are critical to assess vehicle safety and passenger comfort for vehicles running on long span bridges in a windy environment. However, in previous wind-vehicle-bridge (WVB) system analysis, the aerodynamic interference between the vehicle and the bridge was seldom considered, which will result in changing aerodynamic coefficients. In this study, the aerodynamic coefficients of a high-sided truck on the ground (ground case) and a typical bridge deck (bridge deck case) are determined in a wind tunnel. The effects of existent structures including the bridge deck and bridge accessories on the high-sided vehicle's aerodynamic characteristics are investigated. A three-dimensional analytical framework of a fully coupled WVB system is then established based on the finite element method. By inputting the aerodynamic coefficients of both cases into the WVB system separately, the vehicle safety and passenger comfort are assessed, and the critical accidental wind speed for the truck on the bridge in a windy environment is derived. The differences in the bridge response between the windward case and the leeward case are also compared. The results show that the bridge deck and the accessories play a positive role in ensuring vehicle safety and improving passenger comfort, and the influence of aerodynamic interference on the response of the bridge is weak.

A Study on Improvement of fatigue Details in Orthotropic Steel Deck Bridge with Bulkhead Plate (벌크헤드 플레이트가 부착된 강바닥판교의 피로상세 개선 연구)

  • 공병승
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • An orthotropic steel deck system is widely adapted form for a long-span bridge. It has many advantages, such as the big reduction of dead weight, the simplicity for erection, and the reduction of the construction period. However, an orthotropic steel deck system requires a lot of welding work, which may result in defects and deformation of connection. Therefore, the research for the general behavior and fatigue strength of the several details in orthotropic steel deck bridge is necessary. The fatigue failure with distortion results from secondary stress by out-of-plane deformation; these kinds of cracks are very difficult to measure, and can not be precisely calculated through finite element analysis. This stress concentration phenomenon generates the fatigue failure around the lower scallop of the transverse rib. This paper presents improved details of the intersection between the longitudinal rib and the transverse rib of an orthotropic steel deck bridge by the third dimensional hit size test, and the finite element method, which can minimize local stress through parametric study.

Behavior of Main Girder in Continuous Girder System using Cross Girder Method (가로거더공법에서 주형의 연속화 시점에 따른 주형의 거동)

  • Park, Jeong-Ung;Seo, Won-Ju;Lee, Son-Ho
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.533-536
    • /
    • 2008
  • It is on increasing trend to employ H-rolled beams as main flexural members of bridges and of temporary structures owing to their handiness for construction, maintenance, and management. But in the case of applying H-rolled beams to bridges, maximum length of bridge span is around 20m. Therefore, to develop simplified steel-concrete composite bridge having long span using H-rolled beam needs new cross girder system at internal supports, optimization of bridge system without cross beams between supports and steel-concrete composite bridge deck. This study performs mechanical analysis of cross girder system for H-rolled beam steel-concrete composite bridge with long span and verifies its usefulness.

  • PDF

Time domain buffeting analysis of long suspension bridges under skew winds

  • Liu, G.;Xu, Y.L.;Zhu, L.D.
    • Wind and Structures
    • /
    • v.7 no.6
    • /
    • pp.421-447
    • /
    • 2004
  • This paper presents a time domain approach for predicting buffeting response of long suspension bridges under skew winds. The buffeting forces on an oblique strip of the bridge deck in the mean wind direction are derived in terms of aerodynamic coefficients measured under skew winds and equivalent fluctuating wind velocities with aerodynamic impulse functions included. The time histories of equivalent fluctuating wind velocities and then buffeting forces along the bridge deck are simulated using the spectral representation method based on the Gaussian distribution assumption. The self-excited forces on an oblique strip of the bridge deck are represented by the convolution integrals involving aerodynamic impulse functions and structural motions. The aerodynamic impulse functions of self-excited forces are derived from experimentally measured flutter derivatives under skew winds using rational function approximations. The governing equation of motion of a long suspension bridge under skew winds is established using the finite element method and solved using the Newmark numerical method. The proposed time domain approach is finally applied to the Tsing Ma suspension bridge in Hong Kong. The computed buffeting responses of the bridge under skew winds during Typhoon Sam are compared with those obtained from the frequency domain approach and the field measurement. The comparisons are found satisfactory for the bridge response in the main span.

Study of seismic performance of cable-stayed-suspension hybrid bridges

  • Zhang, Xin-Jun;Yu, Zhou-Jun
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1203-1221
    • /
    • 2015
  • By taking a cable-stayed-suspension hybrid bridge with main span of 1400 m as example, seismic response of the bridge under the horizontal and vertical seismic excitations is investigated numerically by response spectrum analysis and time history analysis, its seismic performance is discussed and compared to the cable-stayed bridge and suspension bridge with the same main span, and considering the aspect of seismic performance, the feasibility of using cable-stayed-suspension hybrid bridge in super long-span bridges is discussed. Under the horizontal seismic action, the effects of structural design parameters including the cable sag to span ratio, the suspension to span ratio, the side span length, the subsidiary piers in side spans, the girder supporting system and the deck form etc on the seismic performance of the bridge are investigated by response spectrum analysis, and the favorable values of these design parameters are proposed.

Thermal Effects of Asphalt Pavement on Steel Deck Arch Bridge (강바닥판 아치교의 아스팔트 포장 열영향)

  • Lee Wan-Hoon;Lee Tae-Yeol;Chung Heung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.581-588
    • /
    • 2006
  • Now, a long span and special types of steel deck bridges like as suspention or cable state bridges are increasing and Guss Asphalt used in pavement. But Guss Asphalt may caused severe stress and displacement of the bridge as it is treated using very high temperature ranging from $220^{\circ}C\;to\;260^{\circ}C$. In this paper, a series of numerical tests of a steel deck box arch bridge were conducted to estimate the thermal effect of a steel deck bridge according to temperature changes.

  • PDF

Reliability analysis on flutter of the long-span Aizhai bridge

  • Liu, Shuqian;Cai, C.S.;Han, Yan;Li, Chunguang
    • Wind and Structures
    • /
    • v.27 no.3
    • /
    • pp.175-186
    • /
    • 2018
  • With the continuous increase of span lengths, modern bridges are becoming much more flexible and more prone to flutter under wind excitations. A reasonable probabilistic flutter analysis of long-span bridges involving random and uncertain variables may have to be taken into consideration. This paper presents a method for estimating the reliability index and failure probability due to flutter, which considers the very important variables including the extreme wind velocity at bridge site, damping ratio, mathematical modeling, and flutter derivatives. The Aizhai Bridge in China is selected as an example to demonstrate the numerical procedure for the flutter reliability analysis. In the presented method, the joint probability density function of wind speed and wind direction at the deck level of the bridge is first established. Then, based on the fundamental theories of structural reliability, the reliability index and failure probability due to flutter of the Aizhai Bridge is investigated by applying the Monte Carlo method and the first order reliability method (FORM). The probabilistic flutter analysis can provide a guideline in the design of long-span bridges and the results show that the structural damping and flutter derivatives have significant effects on the flutter reliability, more accurate and reliable data of which is needed.

Recent topics on bridge aerodynamics

  • Matsumoto, Masaru;Shirato, Hiromichi;Yagi, Tomomi
    • Wind and Structures
    • /
    • v.3 no.4
    • /
    • pp.267-277
    • /
    • 2000
  • This paper aims to describe the aerodynamic vibrations of various structural elements of bridges, which are particular issues at present. The aerodynamic countermeasures for those vibrations are also discussed considering the generation mechanisms of the aerodynamic instabilities. In this paper, an example of vortex-induced oscillation of bridge deck and its lesson are discussed. Next, the wind-induced cable vibration and its aerodynamic countermeasures are reviewed. Then, the aerodynamic characteristics on two edge girders and their feasibility for application to long span cable-stayed bridges are considered. Furthermore, the bridge decks for future long span bridges are proposed and their aerodynamic characteristics are also discussed.

Windproof ability of aerodynamic measures to improve the wind environment above a truss girder

  • Wang, Zewen;Tang, Haojun;Li, Yongle;Guo, Junjie;Liu, Zhanhui
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.423-437
    • /
    • 2021
  • Aerodynamic measures have been widely used for improving the flutter stability of long-span bridges, and this paper focuses their windproof ability to improve the wind environment for vehicles. The whole wind environment around a long-span bridge located in high altitude mountainous areas is first studied. The local wind environment above the deck is then focused by two perspectives. One is the windproof effects of aerodynamic measures, and the other is whether the bridge with aerodynamic measures meets the requirement of flutter stability after installing extra wind barriers in the future. Furthermore, the effects of different wind barriers are analyzed. Results show that aerodynamic measures exert potential effects on the local wind environment, as the vertical stabilizer obviously reduces wind velocities behind it while the closed central slot has limited effects. The suggested aerodynamic measures have the ability to offset the adverse effect of the wind barrier on the flutter stability of the bridge. Behind the wind barrier, wind velocities decrease in general, but in some places incoming flow has to pass through the deck with higher velocities due to the increase in blockage ratio. Further comparison shows that the wind barrier with four bars is optimal.

Behavior of FRP-Concrete Composite Deck for a Cable Supported Bridge (사장교용 FRP-콘크리트 합성 바닥판의 거동 특성)

  • Cho, Keun-Hee;Park, Sung-Yong;Kim, Sung-Tae;Cho, Jeong-Rae;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.51-52
    • /
    • 2009
  • A new-type FRP-concrete composite deck is developed and experimentally verified, which is economically applicable to a bridge with a long span exhibiting high cost effectiveness according to reducing self-weight such as cable supported bridge.

  • PDF