• Title/Summary/Keyword: long span

Search Result 1,123, Processing Time 0.026 seconds

Development of a High Strength Conductor for Long Span (장경간용 고강도 가공송전선 개발)

  • Kim, Byung-Geol;Kim, Shang-Shu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.521-522
    • /
    • 2007
  • A new high strength conductor was designed for long span transmission line with a high nitrogen steel having high tensile strength and non-magnetic properties and high strength AI alloy. The tensile strength of conductor is very important to reduce the sag. The height of electric tower depend on the sag also. More than 36% less of sag was achieved by using ACHR(Aluminum conductor stranded high-nitrogen steel reinforced) instead of conventional ACSR.

  • PDF

Design of Long Span Overhead Transmission Line using Special High-tension Wire (특수 고장력전선을 사용한 장경간 가공송전선로 설계)

  • Na, Sang-Yong;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.183-187
    • /
    • 2016
  • Recently, power demand has been increasing every year according to variation of electrical equipments and temperature rise in summer season. So, much more overhead line is being demanded to copy with increasing power demand and operate reliable power system. This paper analysis the characteristics of long span overhead transmission line using special high-tension wire in such as a safety factor, coefficient of elasticity, and the coefficient of linear expansion. Based on the analysis, we proposed the effectiveness of special high-tension wire having much more advantages with respect to height of steel tower and dip compared with conventional ACSR in long span overhead transmission line.

Earthquake Response Analysis of Long-Span Bridges with Multiple Input Motions (다중 지진파 입력을 고려한 장대교량의 지진응답해석)

  • 최준혁;최준성;이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.376-383
    • /
    • 2003
  • For more rational and economical seismic design of long span bridges, it is essential to include in the analysis the effects of multiple input motions and structural or soil nonlinearity which are not considered in the current design practice. In this paper, the effects of these factors on the seismic behavior of long span bridges are studied. First, for the effect of multiple input motions, we take into account the differences in arrival times of seismic waves. To consider nonlinear soil properties we utilize SHAKE which is based on the equivalent linearization method. As a numerical example, a cable-stayed bridge is modelled using the analytical procedures described above. It is shown from the results that the these factors influence the seismic response of the bridge significantly and should never be neglected in design.

  • PDF

Case Study of Coordinate Measurement during Construction of Long-Span Irregular Curved Roof Layers (장경간 비정형 곡면 지붕층의 시공중 좌표 계측 사례 연구)

  • Shim, Hak-Bo;Seok, Won-Kyun;Park, Soon-Jeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.14-15
    • /
    • 2019
  • In this paper, it was tried to prove the possibility and effect of coordinate measurement by using MEP layout equipment at the construction stage, and to propose a method to improve measurement accuracy during construction. For this study, the passenger terminal site, which is a long span structure, was selected and compared with three dimensional CAD drawings and construction measurement results using MEP layout equipment for the precise construction of long-span irregular curved roof layers. As a result, it was found that it is possible to construct three-dimensional curved roof layers using MEP layout equipment through measurement and analysis.

  • PDF

An iterative approach for time-domain flutter analysis of bridges based on restart technique

  • Zhang, Wen-ming;Qian, Kai-rui;Xie, Lian;Ge, Yao-jun
    • Wind and Structures
    • /
    • v.28 no.3
    • /
    • pp.171-180
    • /
    • 2019
  • This paper presents a restart iterative approach for time-domain flutter analysis of long-span bridges using the commercial FE package ANSYS. This approach utilizes the recursive formats of impulse-response-function expressions for bridge's aeroelastic forces. Nonlinear dynamic equilibrium equations are iteratively solved by using the restart technique in ANSYS, which enable the equilibrium state of system to get back to last moment absolutely during iterations. The condition for the onset of flutter instability becomes that, at a certain wind velocity, the amplitude of vibration is invariant with time. A long-span suspension bridge was taken as a numerical example to verify the applicability and accuracy of the proposed method by comparing calculated results with wind tunnel tests. The proposed method enables the bridge designers and engineering practitioners to carry out time-domain flutter analysis of bridges in commercial FE package ANSYS.

Design Bending Moments For Long-Span Slab On a Composite Two-Girder Bridge (2거더 강합성교를 위한 장지간 바닥판 설계 휨모멘트)

  • Yoon, Hye-Jin;Joh, Chang-Bin;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.754-757
    • /
    • 2004
  • This study was performed to propose design bending moment formula for long-span slab on a composite two-girder bridge. FEM models representing slab spaning between 4m and 12m were analyzed, and parameters such as girder flexibility and orthotropy of slab were considered. By regression of the parametric analyses results, the moment formula that can predict the design moment with reasonable margin of safety and correctness was developed. The research also showed that the design bending moment from Korean Bridge Design Code overestimated the design moment for the span length under gm, and underestimated for the span length over 9m.

  • PDF

Free Spanning of Offshore Pipelines by DNV 2002 (DNV 2002에 의한 해저관로의 자유경간해석)

  • Choi, Han-Suk;Joo, Joo-Kyung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.29-33
    • /
    • 2002
  • A procedure of free span and fatigue analysis of offshore pipelines was made per DNV-RP-F105, 2002. The new method includes the axial force and deflection load in pipelines. The screening criteria were used to calculate the allowable span lengths. The screening criteria allow small amplitudes of vortex-induced vibration due to wave and current loading. However, the induced pipe stress is very small and usually below the limit stress of a typical S-N curve. A simplified method was established to calculate the fatigue damage due to long-term current distribution. The long-term current statistics was assumed with a 3-parameter Weibull distribution. The fatigue damage was estimated for the span lengths obtained from the screening criteria for various conditions. Sample calculations show the effect of axial force for various boundary conditions.

  • PDF

Wind-excited stochastic vibration of long-span bridge considering wind field parameters during typhoon landfall

  • Ge, Yaojun;Zhao, Lin
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.421-441
    • /
    • 2014
  • With the assistance of typhoon field data at aerial elevation level observed by meteorological satellites and wind velocity and direction records nearby the ground gathered in Guangzhou Weather Station between 1985 and 2001, some key wind field parameters under typhoon climate in Guangzhou region were calibrated based on Monte-Carlo stochastic algorithm and Meng's typhoon numerical model. By using Peak Over Threshold method (POT) and Generalized Pareto Distribution (GPD), Wind field characteristics during typhoons for various return periods in several typical engineering fields were predicted, showing that some distribution rules in relation to gradient height of atmosphere boundary layer, power-law component of wind profile, gust factor and extreme wind velocity at 1-3s time interval are obviously different from corresponding items in Chinese wind load Codes. In order to evaluate the influence of typhoon field parameters on long-span flexible bridges, 1:100 reduced-scale wind field of type B terrain was reillustrated under typhoon and normal conditions utilizing passive turbulence generators in TJ-3 wind tunnel, and wind-induced performance tests of aero-elastic model of long-span Guangzhou Xinguang arch bridge were carried out as well. Furthermore, aerodynamic admittance function about lattice cross section in mid-span arch lib under the condition of higher turbulence intensity of typhoon field was identified via using high-frequency force-measured balance. Based on identified aerodynamic admittance expressions, Wind-induced stochastic vibration of Xinguang arch bridge under typhoon and normal climates was calculated and compared, considering structural geometrical non-linearity, stochastic wind attack angle effects, etc. Thus, the aerodynamic response characteristics under typhoon and normal conditions can be illustrated and checked, which are of satisfactory response results for different oncoming wind velocities with resemblance to those wind tunnel testing data under the two types of climate modes.

A Study on the Aerodynamic Stability of Long Span Pedestrian Bridges (장경간 보도교의 내풍안정성에 관한 연구)

  • Lee, Seungho;Jeong, Houigab;Kwon, Soon-Duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.287-296
    • /
    • 2019
  • In recent years, a number of long span cable-stayed pedestrian bridges have been constructed to the advantages of relatively low cost construction and the many tourists visiting. However, most of the pedestrian bridges are located in parks or sightseeing areas, so they are conducted without proper review and design process. It is necessary to review the aerodynamic stability of the long span cable-stayed pedestrian bridge, and it should be designed in detail from various points of view rather than the road bridge. In this study, we investigated the wind characteristics of the cable-stayed pedestrian bridge, and the empirical equations for the relationship between the main span length and the fundamental natural frequencies are presented for future use. In addition, the flutter wind speed limit of the flat plate deck pedestrian bridge calculated using the Selberg's equation is also presented. The final aerodynamic bridge section which satisfied the aerodynamic stability was found from open grating method. The proposed method can be used for long span cable-stayed pedestrian bridge in the future.

A state space method for coupled flutter analysis of long-span bridges

  • Ding, Quanshun;Chen, Airong;Xiang, Haifan
    • Structural Engineering and Mechanics
    • /
    • v.14 no.4
    • /
    • pp.491-504
    • /
    • 2002
  • A state-space method is proposed to analyze the aerodynamically coupled flutter problems of long-span bridges based on the modal coordinates of structure. The theory about complex modes is applied in this paper. The general governing equation of the system is converted into a complex standard characteristic equation in a state space format, which contains only two variables. The proposed method is a single-parameter searching method about reduced velocity, and it need not choose the participating modes beforehand and has no requirement for the form of structure damping matrix. The information about variations of system characteristics with reduced velocity and wind velocity can be provided. The method is able to find automatically the lowest critical flutter velocity and give relative amplitudes, phases and energy ratios of the participating modes in the flutter motion. Moreover, the flutter analysis of Jiangyin Yangtse suspension bridge with 1385 m main span is performed. The proposed method has proved reliable in its methodology and efficient in its use.