• Title/Summary/Keyword: long caisson

Search Result 17, Processing Time 0.023 seconds

Dispersion Effects of Wave Force on Interlocking Caisson Breakwater with Shear-Key (전단키형 인터로킹 케이슨 방파제의 파력분산효과)

  • Song, Sung Hoon;Park, Min Su;Jeong, Youn Ju;Hwang, Yoon Koog
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.195-201
    • /
    • 2019
  • Long caisson breakwaters can improve the structural safety of a caisson due to the wave dispersion effect which reduces the average wave force acting on one caisson. However, in order to make long caissons, there are many manufacturing and construction limitations. Recently, interlocking caisson systems, which are to form a long caisson by interlocking individual caissons with adjacent caissons, have been much attention. In the present study, a interlocking caisson system with shear-keys was proposed and the wave dispersion effect according to the shear-key was evaluated analytically. As a result, (1) Because of the asymmetric shape of the interlocking caisson, the structure behavior and the wave dispersion effect of one are also asymmetric. (2) The wave dispersion effect is more influenced by the distribution and characteristics of wave acting on each caisson rather than the shape of the shear-key such as shear angle, height, shear length ratio. (3) The interlocking caisson breakwater is almost the same behavior and wave dispersion effect as a fully integrated breakwater.

Reliability Analysis of the Long Caisson Breakwater Considering to the Wave Force Reduction Parameter (파력감소계수를 고려한 장대케이슨 방파제의 신뢰성해석)

  • Lee, Gee Nam;Park, Woo Sun;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.2
    • /
    • pp.121-127
    • /
    • 2017
  • The actual wave is multi-direction irregular wave. In the case of a long structure, a reduction effect of the wave occurs. In this study, in order to grasp the extent to which these influences contribute to the failure probability and compare the existing modular breakwaters to the stability, we used existing modular breakwaters and long caisson breakwaters using wave force reduction parameter to analysis the reliability. As a result, the reliability index of the long caisson breakwater was higher than that of the existing modular caisson breakwater, and it was confirmed that the significant wave height of the design variables had the highest influence. In addition, the reliability analysis was performed according to the change of the mean value of the variables used in the calculation of the wave force reduction parameter. It is confirmed that the relationship between each variable value and the wave force reduction parameter appears in the analysis results.

Seismic behavior of caisson-type gravity quay wall renovated by rubble mound grouting and deepening

  • Kim, Young-Sang;Nguyen, Anh-Dan;Kang, Gyeong-O
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.447-463
    • /
    • 2021
  • Caisson-type structures are widely used as quay walls in coastal areas. In Korea, for a long time, many caisson-type quay walls have been constructed with a low front water depth. These facilities can no longer meet the requirements of current development. This study developed a new technology for deepening existing caisson-type quay walls using grouting and rubble mound excavation to economically reuse them. With this technology, quay walls could be renovated by injecting grout into the rubble mound beneath the front toe of the caisson to secure its structure. Subsequently, a portion of the rubble mound was excavated to increase the front water depth. This paper reports the results of an investigation of the seismic behavior of a renovated quay wall in comparison to that of an existing quay wall using centrifuge tests and numerical simulations. Two centrifuge model tests at a scale of 1/120 were conducted on the quay walls before and after renovation. During the experiments, the displacements, accelerations, and earth pressures were measured under five consecutive earthquake input motions with increasing magnitudes. In addition, systematic numerical analyses of the centrifuge model tests were also conducted with the PLAXIS 2D finite element (FE) program using a nonlinear elastoplastic constitutive model. The displacements of the caisson, response accelerations, deformed shape of the quay wall, and earth pressures were investigated in detail based on a comparison of the numerical and experimental results. The results demonstrated that the motion of the caisson changed after renovation, and its displacement decreased significantly. The comparison between the FE models and centrifuge test results showed good agreement. This indicated that renovation was technically feasible, and it could be considered to study further by testbed before applying in practice.

Displacement Charateristics of Caisson-Type Breakwater under Earthquake Loadings (지진하중을 받는 케이슨 방파제의 변위 특성분석)

  • Shin, Eun-Chul;Jeon, Jae-Ku;Lee, Joong-Hwa;Lee, Chung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1258-1270
    • /
    • 2009
  • Recently, the earthquakes activities are more of frequency occurred in the country. In case of nomal or large magnitude earthquakes, which cause a rising number of life loss or widespread loss of property. It must be considered how to cope with the situperty of dpmage in the country ty account of ay earthquake. Consequently, the public works have currently ensured against a lot of risk about seismism not only on large scale structures but also relatively small structures. Therefore, in this study, in order to make the seismic stability safe, it has been evaluated by the seismic performance for caisson-type breakwater. The seismic response analyses have conducted on the caisson-type breaker under long-period, short-period and artificial seismic wave. The liquefaction potential of the foundation, which is caisson-type, is also estimated by using the simplified assessment method. Finally, the result of the numerical analysis by PENTAGON 2D finite element method(FEM) program are presented for 3 cases with time-history seismic analysis under the seismic load.

  • PDF

Calculation of the Peak-delay Force Reduction Parameter of Multi-Directional Random Waves Acting on a Long Caisson Breakwater (장대 케이슨 방파제에 작용하는 다방향 불규칙파랑의 파력감소계수 산정)

  • Jung, Jae-Sang;Kim, Bum-Hyung;Kim, Hyung-Jun;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.10
    • /
    • pp.843-850
    • /
    • 2010
  • By employing multi-directional random waves, a parameter controlling the force acting on a long caisson breakwater is investigated in detail. Both JONSWAP (Joint North Sea Wave Project) and asymmetric directional spectra are adopted for frequency and directional spectra. It is found that the parameter decreases as the length of caisson and the angle of main direction of incident waves increase. Furthermore, the parameter is much similar to that of regular waves as the maximum spreading parameter $s_{max}$ increases. The parameter, however, decreases as asymmetry parameter ${\mu}$ increases when the main direction of incident waves is oblique to the breakwater.

Effects of Long-Term Harbor Shutdown and Temporal Operational Stoppage upon Optimal Design of Vertical Breakwater Caisson (장기간의 항만 폐쇄와 일시적 운영 중단이 직립 방파제 케이슨의 최적 설계에 미치는 영향)

  • Suh, Kyung-Duck;Kim, Deok-Lae;Kim, Kyung-Suk
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.2
    • /
    • pp.113-127
    • /
    • 2007
  • In this study, a model to calculate the expected total construction cost is developed that simultaneously considers the rehabilitation cost related to the sliding of the caisson, the economic damage cost due to harbor shutdown in the event of excessive caisson sliding, and the economic damage cost due to temporal operational stoppage by excessive wave overtopping. A discount rate is used to convert the damage costs occurred at different times to the present value. The optimal cross-section of a caisson is defined as the cross-section that requires a minimum expected total construction cost within the allowable limit for the expected sliding distance of the caisson during the lifetime of the breakwater. Two values are used for the allowable limit: 0.3 and 0.1 m. It was found that the economic damage cost due to harbor shutdown by excessive caisson sliding is more critical than the rehabilitation cost of the caisson or the economic damage cost by excessive wave overtopping in the decision of the optimal cross-section. In addition, the optimal cross-section of the caisson was shown to be determined by the allowable limit for the expected sliding distance rather than the minimum expected total construction cost as a larger value is used for the threshold sliding distance of the caisson for harbor shutdown.

Characteristics and Causes of Wave-Induced Settlement in Caisson Breakwater: Focusing on Settlement Data (파랑에 의한 방파제 케이슨 침하 경향 및 원인 분석: 침하 계측자료를 중심으로)

  • Kim, Tae-Hyung;Nam, Jung-Man;Kim, In-Sok;Yun, Seong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.7
    • /
    • pp.27-40
    • /
    • 2014
  • So far, studies on the settlement of breakwater have mainly been conducted through numerical model tests focusing on an analysis or through the laboratory wave tank tests using a scaled model. There has not been a study on the settlement that is measured in an actual breakwater structure. This study analyzed the data of settlement that has been measured in an actual caisson breakwater for a long time and the characteristics and causes of wave-induced settlement in the caisson (including beneath ground), based on qualitative aspect, were examined. The analysis revealed that wave clearly has an effect on the settlement in caisson, especially in the condition of high wave such as typhoon. Caisson settlement is caused by the liquefaction of ground, which is due to the increase of excess pore pressure, the combination of oscillatory excess pore pressure and residual excess pore water pressure, and the solidification process of ground due to dissipation of the accumulated excess pore pressure. The behavior of excess pore pressure in the ground beneath the caisson is entirely governed by the behavior of the caisson. Ground that has gone through solidification is not likely to go through liquefaction in a similar or a smaller wave condition and consequently, the possibility of settlement is reduced.

Proposal of Sliding Stability Assessment Formulas for an Interlocking Caisson Breakwater under Wave Forces (파랑하중에 대한 인터로킹 케이슨 방파제의 미끌림 안정성 평가식 제안)

  • Park, Woo-Sun;Won, Deokhee;Seo, Jihye
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.2
    • /
    • pp.77-82
    • /
    • 2017
  • Recently, the possibility of abnormal waves of which height is greater than design wave height have been increased due to the climate change, and therefore it has been urgent to secure the stability for harbor structures. As a countermeasure for improving the stability of conventional caisson breakwaters, a method has been proposed in which adjacent caissons are interlocked with each other to consecutively resist the abnormal wave forces. In order to reflect this research trend, the reduction effect of the maximum wave force resulted from introducing a long caisson has been presented in the revision to the design criteria for ports and fishing harbors and commentary. However, no method has been proposed to evaluate the stability of interlocking caisson breakwater. In this study, we consider the effect of the phase difference of the oblique incidence of the wave based on the linear wave theory and apply the Goda pressure formula for considering design wave pressure distribution in the vertical direction. Sliding stability assessment formula of an interlocking caisson breakwater is proposed for regular, irregular, and multi-directional irregular wave conditions.

Study on Establishment of a Monitoring System for Long-term Behavior of Caisson Quay Wall (케이슨 안벽의 장기 거동 모니터링 시스템 구축 연구 )

  • Tae-Min Lee;Sung Tae Kim;Young-Taek Kim;Jiyoung Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.40-48
    • /
    • 2023
  • In this paper, a sensor-based monitoring system was established to analyze the long-term behavioral characteristics of the caisson quay wall, a representative structural type in port facilities. Data was collected over a period of approximately 10 months. Based on existing literature, anomalous behaviors of port facilities were classified, and a measurement system was selected to detect them. Monitoring systems were installed on-site to periodically collect data. The collected data was transmitted and stored on a server through LTE network. Considering the site conditions, inclinometers for measuring slope and crack meters for measuring spacing and settlement were installed. They were attached to two caissons for comparison between different caissons. The correlation among measured data, temperature, and tidal level was examined. The temperature dominated the spacing and settlement data. When the temperature changed by approximately 50 degrees, the spacing changed by 10 mm, the settlement by 2 mm, and the slope by 0.1 degrees. On the other hand, there was no clear relationship with tidal level, indicating a need for more in-depth analysis in the future. Based on the characteristics of these collected database, it will be possible to develop algorithms for detecting abnormal states in gravity-type quay walls. The acquisition and analysis of long-term data enable to evaluate the safety and usability of structures in the event of disasters and emergencies.

Two and Three Dimensional Analysis about the Reflection Coefficient by the Slit Caisson and Resulting Wave Pressure Acting on the Structure (슬리트케이슨제에 의한 반사율과 구조물에 작용하는 파압에 관한 2차원 및 3차원해석)

  • Lee, Kwang-Ho;Choi, Hyun-Seok;Baek, Dong-Jin;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.374-386
    • /
    • 2010
  • Recently, the theoretical and experimental research is being made actively in control character of waves of perforated-wall caisson breakwater like the slit caisson. This study showed that the character of reflection coefficient and the wave pressure acting on the front and inner of slit caisson were estimated in two and three dimensional numerical wave flume and compared each other. The numerical experiment was set and conducted by various cases as to a variety of wave steepness under 7 sec, 9 sec, 11sec and 13 sec period condition. In this study using a 2 and 3 dimensional numerical wave flume, it applied the Model for the immiscible two-phase flow based on the Naveir-Stokes Equations. This technique can easily reproduce a complicated physical phenomenon more than others and organize the program simply. According to the results of the experiment, the reflection coefficient was estimated high in short-period waves. However, 2-dimensional numerical experiment and 3-dimensional numerical experiment were the same in case of the long-period waves and high wave steepness. And to conclude in case of short-period waves the pressures were a relatively small difference between the two, but there was a big gap in longperiod waves and high wave steepness.