The records of wave heights which were observed at Muk ho and Po hang of the East Coast of Korea were analized by several probility functions. The exponential 2 parameter distribution was found as the best fit probability function to the historical distribution of wave heights by the test of goodness of fit. But log-normal 2 parameter and log-extremal type A distributions were also fit to the historical distribution, especially in the Smirnov-Kolmogorov test. Therefore, it can't be always regarded that those two distributions are not fit to the wave heiht's distribution. In the test of goodness of fit, the Chi-Square test gave very sensitive results and Smirnov-Kolmogorov test, which is a distribution free and non-parametric test, gave more inclusive results. At the next stage, the inter-relationship between the mean and the one-third wave heights, the mean and the one-=tenth wave heights, the one-third and the one-tenth wave heights, the one-third and the highest wave heights were obtained and discussed.
ARMA(p, q) 모형 분석에서 분산 안정화 또는 정규화를 위해 멱변환(power transformation)이 사용된다. 변환된 자료를 이용하여 분석이 이루어지며 원 자료의 예측을 위해 재변환이 사용된다. 이때 흔히 변환된 자료 분석에서 얻어진 예측값의 역함수 값이 원자료 예측값으로 사용되지만 이는 편향이 있는 것으로 알려져 있다. 이를 해결하기 위해 로그 변환의 경우 Granger과 Newbold (1976)는 로그-정규분포의 기댓값을 이용할 것을 제안하였다. 본 연구에서는 모의실험을 통하여 제곱근 변환과 로그 변환 후 재변환을 사용할 때 예측값으로 기댓값의 역함수를 이용하는 방법과 역함수의 기댓값을 사용하였을 때의 추정의 결과를 모의실험을 통하여 비교하였다.
Communications for Statistical Applications and Methods
/
제19권3호
/
pp.345-358
/
2012
표본선택 모형을 최우추정법으로 추정할 때 오차항의 분포를 제대로 가정하는 것이 매우 중요하다. 표본선택 모형의 선택 방정식과 본 방정식의 오차항 분포를 일반적으로 이변량 정규분포로 가정하지만, 이 가정이 오차항의 실제 분포를 과도하게 제약할 가능성이 있다. 본 연구는 표본선택 모형의 오차항 분포로 $S_U$-정규분포를 도입한다. $S_U$-정규분포는 분포의 비대칭성과 초과첨도를 허용한다는 측면에서 정규분포보다 훨씬 유연하면서, 동시에 정규분포를 극한분포의 형태로 포함하고 있다. 또한 정규분포처럼 다변량 분포함수가 존재하기 때문에 표본선택 모형과 같은 다변량 모형에서도 활용할 수 있다. 본 논문은 $S_U$-정규분포를 이용한 표본선택 모형에서 로그우도 함수와 조건부 기댓값을 도출하고, 시뮬레이션을 통해 정규분포 모형과 추정성과를 비교한다. 또한 자동차 보유 가구들의 자동차 유지비에 관한 실제 데이터를 이용하여 $S_U$-정규분포 표본선택 모형의 추정결과를 제시한다.
본 연구는 Spark 클러스터 환경에서 대용량 로그를 분석하여 시스템 이상과의 연관성을 탐색한다. 로그를 활용한 이상 감지 연구는 증가하고 있으나, 클러스터의 다양한 컴포넌트의 로그를 충분히 활용하지 못하고 이상과 시스템의 연관성을 고려하지 않는다는 한계가 있다. 따라서 본 논문에서는 정상과 비정상 로그의 분포를 분석하고, 로그 템플릿의 출현 여부를 통해 이상 감지 가능성을 탐색한다. Hadoop과 Spark를 활용하여 정상과 비정상 로그 데이터를 생성하고, t-SNE와 K-means 클러스터링을 통해 비정상 상황에서의 로그 템플릿을 찾아 이상 현상을 파악한다. 결과적으로, 비정상 상황에서만 발생하는 고유한 로그 템플릿을 확인하며 이를 통해 이상 현상 감지의 가능성을 제시한다.
경쟁위험(competing risk) 하에서의 누적 발생함수(cumulative incidence function)는 일반적으로 비모수적 방법으로 추정된다. 그러나 관심 있는 원인에 의한 사건이 다른 원인에 의한 사건보다 상대적으로 적게 발생하는 경우에 비모수적 방법으로 추정된 누적발생함수는 이산성으로 인해 다소 정확하지 않게 된다. 이와 같은 경우에 Bryant와 Diagnam(2004)는 관심 있는 원인에 대한 원인특정적 위험함수(cause-specific hazard function)를 모수적으로 모형화하고 다른 원인에 의한 사건은 비모수적으로 추정하는 준모수적 방법을 제안했다. 본 연구에서는 준모수적 누적발생함수 추정량을 재표현하고 와이블분포모형과 대수 정규분포모형으로 확장하였다. 또한 대수 정규분포 원인특정적 위험모형일 경우 누적 발생함수에 대한 비모수적 추정량, 와이블분포 준모수적 추정량과 대수 정규분포 준모수적 추정량의 효율성을 비교하며 준모수적 추정량의 성능과 모형 오설정이 미치는 영향을 살펴보았다.
This paper presents an analysis of the capacity, the interference of adjacent cells of a CDMA cellular system, depending on the soft handoff region and log-normal shadowing. The optimum soft handoff region is chosen by using Erlang capacity. It is shown that when the soft handoff region increases, the Erlang capacity increase due to a reduction of the interference power of adjacent cells. But if the region is increased above a certain value, there is no improvement in the system’s capacity. Furthermore as the standard deviation of the log-normal shadowing's normal distribution factor increases, the soft handoff region has to be increased linearly to achieve the same Erlang capacity.
Communications for Statistical Applications and Methods
/
제25권6호
/
pp.633-645
/
2018
Gaussian error distributions are a common choice in traditional regression models for the maximum likelihood (ML) method. However, this distributional assumption is often suspicious especially when the error distribution is skewed or has heavy tails. In both cases, the ML method under normality could break down or lose efficiency. In this paper, we consider the log-concave and Gaussian scale mixture distributions for error distributions. For the log-concave errors, we propose to use a smoothed maximum likelihood estimator for stable and faster computation. Based on this, we perform comparative simulation studies to see the performance of coefficient estimates under normal, Gaussian scale mixture, and log-concave errors. In addition, we also consider real data analysis using Stack loss plant data and Korean labor and income panel data.
Land reclamation, coastal construction, coastline extension and port construction, all of which involve dredging, are increasingly required to meet the growing economic and societal demands in the coastal zone. During the land reclamation, a portion of landfills are lost from the desired location due to a variety of causes, and therefore prediction of sediment transport is very important for economical and efficient land reclamation management. In this study, laboratory disposal tests were performed using an open channel, and suspended sediment transport was analyzed according to flow velocity and grain size. The relationships between the average and standard deviation of the deposition distance and the flow velocity were almost linear, and the relationships between the average and standard deviation of deposition distance and the grain size were found to have high non-linearity in the form of power law. The deposition distribution of sediments was demonstrated to have log-normal distributions regardless of the flow velocity. Based on the experimental results, modeling of suspended sediment transport was performed using deep neural network, one of deep learning techniques, and the deposition distribution was reproduced through log-normal distribution.
Yoon, Churl;Kim, Sung Il;Lee, Sung Jin;Kang, Seok Hun;Paik, Chan Y.
Nuclear Engineering and Technology
/
제53권12호
/
pp.3966-3978
/
2021
ISFRA (Integrated SFR Analysis Program for PSA) computer program has been developed for simulating the response of the PGSFR pool design with metal fuel during a severe accident. This paper describes validation of the ISFRA aerosol model against the Aerosol Behavior Code Validation and Evaluation (ABCOVE) experiments undertaken in 1980s for radionuclide transport within a SFR containment. ABCOVE AB5, AB6, and AB7 tests are simulated using the ISFRA aerosol model and the results are compared against the measured data as well as with the simulation results of the MELCOR severe accident code. It is revealed that the ISFRA prediction of single-component aerosols inside a vessel (AB5) is in good agreement with the experimental data as well as with the results of the aerosol model in MELCOR. Moreover, the ISFRA aerosol model can predict the "washout" phenomenon due to the interaction between two aerosol species (AB6) and two-component aerosols without strong mutual interference (AB7). Based on the theory review of the aerosol correlation technique, it is concluded that the ISFRA aerosol model can provide fast, stable calculations with reasonable accuracy for most of the cases unless the aerosol size distribution is strongly deformed from log-normal distribution.
표본조사는 비용과 시간을 절약하면서도 주어진 정확성을 만족하는 통계를 얻을 수 있다. 그러나 최근에는 다수의 무응답 발생으로 인해 조사의 정확성이 크게 떨어지고 있다. 무응답은 다양한 이유로 발생하고 있으나 무응답이 관심변수와 함수 관계가 있는 경우에는 이 정보를 이용하여 무응답을 적절히 처리해야 추정의 정확성이 유지될 수 있다. 최근 Chung과 Shin (2017, 2019), Min과 Shin (2018)은 응답률이 관심변수의 지수 또는 선형함수이고 초모집단모형의 오차가 정규분포를 따를 때 무응답으로 인해 발생한 편향을 제거함으로써 추정의 정확성이 향상되는 것을 확인하였다. 이에 본 연구에서는 사업체조사에서 초모집단모형의 오차가 감마분포 또는 로그-정규분포를 따르는 경우에서의 무응답 편향보정 추정량을 제안하였다. 또한 모의실험을 통하여 제안된 추정량의 우수성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.