• Title/Summary/Keyword: log drying

Search Result 88, Processing Time 0.023 seconds

Manufacture of Spent Layer Chicken Meat Products by Natural Freeze-Drying during Winter (겨울철 자연 동결 건조에 의한 노계 육제품의 제조)

  • Lee, Sung-Ki;Kang, Sun-Moon;Lee, Ik-Sun;Seo, Dong-Kwan;Kwon, Il-Kyung;Pan, Jo-No;Kim, Hee-Ju;Ga, Cheon-Heung;Pak, Jae-In
    • Food Science of Animal Resources
    • /
    • v.30 no.2
    • /
    • pp.277-285
    • /
    • 2010
  • The objective of this study was to manufacture spent layer chicken meat products by natural freeze-drying. The spent layers of chickens that were slaughtered at 80 wk were obtained from a local slaughter house and separated into two halves of carcasses. The samples were divided into the following groups: 1) control (non-curing), 2) curing, and 3) curing with 2% trehalose before drying. The cured meats were placed at $2^{\circ}C$ for 7 d and then transferred to a natural drying spot located in Injae City, Gangwondo, Korea. The experiment was conducted from January to March in 2008. The average temperature, RH, and wind speed were $-1.5^{\circ}C$, 63%, and 1.8 m/sec, respectively. The cured treatments showed higher pH, lower Aw and lower shear force value compared with the control. Based on the results of TBARS (2-thiobarbituric acid reactive substances) level and volatile basic nitrogen value, lipid oxidation and protein deterioration were inhibited in curing treatments during drying. Trehalose acted as a humectant because it maintained a lower water activity despite the relatively higher moisture content during drying. The polyunsaturated fatty acids content and sensory attributes were higher in cured treatments than in the control during drying. Most of the bacterial counts in the treated groups were lower by 2 Log CFU/g after 1 mon of drying, and Salmonella spp. and Listeria spp. were not found in any treatment. There was also no microbial safety problem associated with dried meat products. Based on the results of this experiment, dried meat products could be manufactured from precured spent layer chickens by natural freeze-drying during winter.

Microbial Contamination Level and Disinfection Effect of Electrolyzed Water in the Production Process of Dried-Laver Pyropia sp. (마른김(Pyropia sp.) 가공 공정에서의 미생물 오염도 및 전기분해수의 처리 효과)

  • Cho, Jong-Lak;Hong, Do-Hee;Kim, Young-Mog;Kim, Hyun-Joong;Kim, Jeong-Mok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.662-669
    • /
    • 2022
  • The purpose of this study is to test the effects of electrolyzed water treatment on dried-laver Pyropia sp. processing facilities to control microbial contamination. Following the progression of the process to the next step, as well as during the lapse between process operating hours, the contamination level of total viable cell counts (TVC) and total coliform (TC) of laver increased. The TVC increased during the aging step, and after the molding-drying steps were completed, it increased by approximately 2.0 log CFU (colony forming unit)/g. Freshwater used for processing in April had a TVC of 4.31 log CFU/mL, which was more polluted than 2.61 log CFU/mL of seawater. Electrolyzed water was used to treat the sponge used in the laver-molding process, which resulted in a 2 log CFU/mL decrease.The TVC of dried-laver decreased by 1 to 2 log CFU/g when electrolyzed water was applied to the process. In conclusion, application of electrolyzed water in dried-laver processing was shown to be effective in reducing the microbiological contamination of the final product.

Antibacterial effects of Chitosanon-ascorbate Treated Kwamaegi Prepared on Microorganism Contamination (Chitosan-ascorbate 처리 과메기에 있어서 오염미생물에 대한 저해효과)

  • Kim, Young-Sook;oh, Seung-Hee;Kim, Soon-Dong
    • KSBB Journal
    • /
    • v.24 no.2
    • /
    • pp.156-162
    • /
    • 2009
  • We examined saury, herring, gizzard shad kwamaegi to measure of microbic contamination rate of kwamegi that are sold in the market now. In the total bacteria, staphylococcus, peroxide value, and microorganisms is inhibited that from sample that we treated a substance with chitosan-ascorbate (CA) and other orders deep water (DW), ginseng steamed red and wine (GRW), NT (not treated). When we compared between SGRW and SNT, SCA show us more inhibition effect 0.22-0.49 log cycle in the total aerobacter. When we compared between HDW and HNT, HCA restraint 0.05-0.45log cycle, and when we compared between GDW and GNT, GCA inhibited 0.45 log cycle. In the coliform and E. coli, growths of microorganisms were inhibited followed order by treatment of CA, NT, and DW. GDW, HCA and HNT checked enough amount of water from the moisture measurement; but SGW, GCA, HEW and SCA showed 7-15% lack of moisture, and SNT and GNT have 10% more moisture. Peroxide value is changed to 41-51meq/kg when we did treat CA in there and a side that didn't add antimicrobial expressed the result numerically that 56-58meq/kg. In the sensory evaluation, customer gave preference to followed by Saury kwamaegi, herring, and gizzard shad kwamaegi. We have a point of view when kwamaeki manufactured if we add natural antibiotic and it uses to vacuum drying, we would inhibited of multiplication of microorganism, and of peroxides.

Analysis of Microbiological Hazards of Preprocessed Namuls in School Food Service and Processing Plant (학교급식에 공급되는 전처리 나물류 및 가공업체에서의 공정별 미생물학적 위해요소 분석)

  • Kwak, Soo-Jin;Kim, Su-Jin;Lkhagvasarnai, Enkhjargal;Yoon, Ki-Sun
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.2
    • /
    • pp.117-126
    • /
    • 2012
  • This study was conducted to assess the levels of microbiological hazards of preprocessed Namuls, which were served at the school foodservice. 19 preprocessed ground or root vegetables were collected from 21 schools in May to June of 2011. Heavy contamination of aerobic plate counts (from 3.39 to 8.42 logCFU/g) and total coliform groups (from 3.16 to 7.84 logCFU/g), enterobacteriaceaes (from 2.53 to 7.55 logCFU/g) were detected in preprocessed Namuls. In addition, the detection rates of Escherichia coli, Staphylococcus aureus and Bacillus cereus (emetic form) were 4.3%, 11.7% and 2.1%, respectively. In addition, sanitary indicative bacterium at preprocessing steps of root vegetables (lotus root, burdock root, bellflower root) and blanched Namuls (bracken, sweet potato vine, chinamul) were analyzed. Aerobic plate counts, coliform groups, and enterobacteriaceaes were not effectively removed during preprocessing including washing and soaking steps. In the case of blanched Namuls (bracken, sweet potato vine, chinamul), contamination levels increased more after drying process and no significant reduction effect on the levels of microbial contamination was observed during preprocessing steps. Thus, effect of preprocessing steps on the microbiological hazards in Namuls must be reevaluated to improve the microbiological quality of preprocessed Namuls at the school foodservice and retail markets.

Comparison of Antimicrobial Effect of Alcohol Gel according to the Amount and Drying Time in Health Personnel Hand Hygiene (의료종사자 손 소독용 알코올 젤의 사용량과 건조시간에 따른 항균효과의 비교)

  • Ji, Yoon Jung;Jeong, Jae Sim
    • Journal of Korean Academy of Nursing
    • /
    • v.43 no.3
    • /
    • pp.305-311
    • /
    • 2013
  • Purpose: The purpose of this study was to compare the effect of alcohol gel according to the amount and drying time in health personnel hand hygiene and to promote in their practice adequate and effective hand hygiene. Methods: The crossover experimental study was performed with 14 volunteers. Hands were artificially contaminated with 5 mL of $10^8$ CFU/mL of Serratia marcescens (ATCC 14756) and four different alcohol gel hand hygiene methods varying by the amount of alcohol gel (2 mL vs. 1 mL) and drying time (complete vs. incomplete) were compared. Samples were collected by glove juice sampling procedures. Results: Mean log reduction values of the four different hand hygiene methods were $2.22{\pm}0.36$, $1.26{\pm}0.53$, $1.49{\pm}0.60$, $0.89{\pm}0.47$ respectively for the 4 groups: adequate amount (2mL) and complete dry (30 seconds rubbing followed by 2 min air-dry), inadequate amount (1 mL) and complete dry, adequate amount and incomplete dry (15 seconds rubbing and no air-dry), and inadequate amount and incomplete dry. The difference was statistically significant in the adequate amount and complete dry group compared to other three groups (p<.001). Conclusion: Only alcohol gel hand hygiene with adequate amount and complete drying was satisfactory by U.S. FDA-TFM efficacy requirements for antiseptic hand hygiene products.

Whey Protein Concentrate, Pullulan, and Trehalose as Thermal Protective Agents for Increasing Viability of Lactobacillus plantarum Starter by Spray Drying

  • Sun, Haiyue;Hua, Xiaoman;Zhang, Minghao;Wang, Yu;Chen, Yiying;Zhang, Jing;Wang, Chao;Wang, Yuhua
    • Food Science of Animal Resources
    • /
    • v.40 no.1
    • /
    • pp.118-131
    • /
    • 2020
  • It is necessary to add protective agents for protecting the probiotic viability in the preparation process of probiotics starter. In this study, we used whey protein concentrate (WPC), pullulan, trehalose, and sodium glutamate as the protective agent and optimized the proportion of protective agent and spray-drying parameters to achieve the best protective effect on Lactobacillus plantarum. Moreover, the viable counts of L. plantarum in starter stored at different temperatures (-20℃, 4℃, and 25℃) for 360 days were determined. According to response surface method (RSM), the optimal proportion of protective agent was 24.6 g/L WPC, 18.8 g/L pullulan, 16.7 g/L trehalose and 39.3 g/L sodium glutamate. The optimum spray-drying parameters were the ratio of bacteria to protective agents 3:1 (v: v), the feed flow rate 240 mL/h, and the inlet air temperature 115℃ through orthogonal test. Based on the above results, the viable counts of L. plantarum was 12.22±0.27 Log CFU/g and the survival rate arrived at 85.12%. The viable counts of L. plantarum stored at -20℃ was more than 1010 CFU/g after 200 days.

Change in quality characteristics of yellow paprika according to drying methods (건조방법을 달리한 노란 파프리카의 품질특성 변화)

  • jung, Hyeon-A;Hong, Ju-Yeon
    • Food Science and Preservation
    • /
    • v.24 no.8
    • /
    • pp.1079-1087
    • /
    • 2017
  • The study attempted to investigate the variation in the quality of the yellow paprika according to the duration of the yellow paprika and to use the basic materials for the development of various processed foods. The moisture content of dried paprika was 11.19% on the freeze-drying paprika (FD), and the amount of water was increased by 18.19% on the 15th day of the storage cycle. The pH has been significantly changed depending on the length of the storage period, and the sugar content in FD. The acidity contents was increased during storage in all dried paprikas showed the highest acidity, but hot air-drying paprika(HAD) was lowest in the acidity. The L value was decreased during storage period from the paprika outside and inside. The a value was not significantly dependent on the length of storage period from paprika outside and inside, and the b value increased the during storage period from paprika outside and inside. The texture of strongness, hardness, chewiness, and brittleness were decreased during storage period from all drying paprika except for FD, showing the increasing trend in cohesiveness, springiness, chewiness, and brittleness. The total aerobes changes was the lowest in HAD.

Comparison of physicochemical and microorganism characteristics between the air-dried and sun-dried red pepper in south Korea (열풍 건조와 태양 건조한 국내산 고추의 물리화학적 및 미생물학적 품질 특성 비교)

  • Ku, Kyung Hyung;Lee, Kyung-A;Koo, Minseon
    • Food Science and Preservation
    • /
    • v.21 no.4
    • /
    • pp.451-459
    • /
    • 2014
  • The aim of this study was to provide useful information for making guide of quality index of Korean red pepper. The results of physicochemical characteristics analysis showed the moisture content of air-dried and sun-dried red pepper were 10.38~15.60% and 9.46~17.22%, which show that 50% of the 40 samples exceeded the 13% KS moisture standards of red pepper powder. The capsaicinoids content of the air-dried and sun-dried samples were 10.85~126.39 mg% (1,627~18,958 Scoville heat unit) and 0.43~164.09 mg% (64.5~24,613.5 Scoville heat unit). A wide distribution of ASTA values was observed: 49.12~154.69 and 70.08~182.13 for air-dried and sun-dried red pepper, respectively, with 9.29~23.10% free sugar, and 0~1,050 mg% of ascorbic acid. The total viable cells of the air-dried red peppers were 2.01~6.67 log CFU/g and of sun-dried red peppers, 1.74~5.77 log CFU/g. The contamination level of yeast in the samples were 1.03~4.12 log CFU/g of the air-dried samples and 1.05~6.10 log CFU/g of the sun-dried samples. Among the foodborne pathogens, Clostridium perfringens and Bacillus cereus were detected in many red pepper samples regardless drying method. In the principal component analysis, the first (PC1) and second principal components (PC2) accounted for 56.78 % of the total variances (38.47% and 18.31%, respectively). Ascorbic acid, ASTA, color value (L, a, b) were strongly correlated with the PC1, and quality characteristics such as moisture, microorganism, sample (drying method) showed a negative correlation with the PC1.

Microbial Hazard Analysis of Manufacturing Processes for Starch Noodle (당면의 제조공정별 미생물학적 위해요소 분석)

  • Cheon, Jin-Young;Yang, Ji Hye;Kim, Min Jeong;Lee, Su-Mi;Cha, Myeonghwa;Park, Ki-Hwan;Ryu, Kyung
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.4
    • /
    • pp.420-426
    • /
    • 2012
  • The purpose of this study was to identify control points through microbiological hazard analysis in the manufacturing processes of starch noodles. Samples were collected from the ingredients, manufacturing processes, equipment and environment. Microbiological hazard assessments were performed using aerobic plate counts (APC), Enterobacteriaceae (EB), E. coli and five pathogens including B. cereus, E. coli O157:H7, L. monocytogenes, Salmonella spp., and S. aureus. The APC levels in raw materials were from 2.12 to 3.83 log CFU/g. The contamination levels after kneading were 4.31 log CFU/g for APCs and 2.88 log CFU/g for EB counts. APCs decreased to 1.63 log CFU/g and EB were not detected after gelatinization, but their levels slightly increased upon cooling, cutting, ripening, freezing, thawing, and separating. The reuse of cooling and coating water would be a critical source of microbial increase after cooling. After drying, APCs and EB counts decreased to 5.05 log CFU/g and 2.74 log CFU/g, respectively, and the levels were maintained to final products. These results suggest that the cooling process is a critical control point for microbiological safety, and the cooling water should be treated and controlled to prevent cross contamination by pre-requisite program.

Effects of Gamma Irradiation on Queso Blanco Cheese (퀘소블랑코 치즈의 감마선 조사 처리 효과)

  • Jeong, Seok-Geun;Noh, Young-Bae;Shin, Ji-Hye;Han, Gi-Sung;Chae, Hyun-Seok;Yoo, Young-Mo;Ahn, Jong-Nam;Lee, Ju-Woon;Jo, Cheor-Un;Lee, Wan-Kyu;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • Effects of gamma irradiation on chemical, microbiological, and immunological changes of Queso Blanco cheese were investigated. Although Queso Blanco cheese was made by heat pasteurization at 85$^{\circ}$C and addition of acid without lactic starter culture, total bacterial counts and lactic acid bacterial counts of control cheese were 7.65${\pm}$0.04 and 7.64${\pm}$0.02 log CFU/mL, respectively. It was thought that this microbial growth was due to the incomplete inactivation of raw milk by the heat treatment, resulting into growth during the pressing and the drying process. It demonstrated the possibility that if heat- and acid-resistant hazard microbes are present in raw milk, they can grow during the processes. Lactic acid bacterial counts of the irradiated cheese were 5.45${\pm}$0.02 log CFU/mL at 1kGy, 2.12${\pm}$0.12 log CFU/mL at 2kGy, and not detected at 3kGy or higher doses. The reduction of antigenicity by gamma irradiation was not found. It might be caused by the fact that most whey proteins of milk, a major antigen in milk, were already denaturated by heat process and removed during the draining.

  • PDF