• Title/Summary/Keyword: locomotive mechanism

Search Result 34, Processing Time 0.025 seconds

Modeling and Experimental Validation of Earthworm-like Robot (지렁이 모사 로봇의 모델링 및 실험 검증)

  • Park Suk-Ho;Kim Byung-Kyu;Kwon Ji-Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.287-294
    • /
    • 2006
  • In recent years, capsule endoscope is highlighted for the patient's convenience and the possibility of the application in the small intestine. However, the capsule endoscope has some limitations to get the image of the digestive organ because its movement only depends on the peristaltic motion. In order to solve these problems, locomotion of capsule endoscope is necessary. In this paper, we analyze the locomotive mechanism of earthworm-like robot proposed as locomotive device of capsule endoscope and derive the condition which can Judge the possibility of its mobility using theoretical analysis. Based on a biomechanical modeling and simulation, the critical stroke, that is minimum stroke of the earthworm-like robot to perform motion inside small intestine, is obtained. Also, this derived critical stroke can be validated by the moving test of fabricated earthworm-like robot. Consequently, it is expected that this study can supply useful information to design of earthworm-like robot for mobility of capsule endoscope.

A Study of Wheel Tread Spalling Problem of $DF_{21}$ Locomotive

  • Weihua, Ma;Shihui, Luo
    • International Journal of Railway
    • /
    • v.1 no.2
    • /
    • pp.31-36
    • /
    • 2008
  • $DF_{21}$ diesel locomotive was designed to satisfy the requirement of Kunming Meter track and the 2Co self-guided radial bogie was used to suit the complex curve track. There are totally 12 locomotives was served on the track. The first two locomotives were devotion running on the track since April 2003, the wheel tread splling was occurred on the middle wheel set of the two locomotives after running nearly 150 thousands km on the track of the two locomotives at August 2004. The dynamic analysis was carried out to find the reason. The wheel set longitudinal vibration resonance phenomenon was existed on the locomotive dynamic performance, and this was caused by the too big longitudinal stiffness of the journal box bar on the middle wheel set. Wheel set longitudinal vibration resonance maybe an important reason of lead to wheel tread spalling. The corresponding mend methods were put forward from the point of view of wheel set longitudinal vibration resonance. All the wheel tread of the 12 locomotives on the middle wheel set were in good condition and not occurred the wheel tread spalling after the mend till December 2007 after 350 thousands km were finished. The mechanism of the wheel tread splling and corresponding mend method was discussed in detail in this paper.

  • PDF

Influence of Dither Motion on the Friction Coefficient of a Capsule-type Endoscope (디더운동이 캡슐형 내시경의 마찰계수 감소에 미치는 영향)

  • Hong Yeh-Sun;Choi Il-Soo;Kim Byung-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.57-63
    • /
    • 2005
  • Development of a locomotive mechanism fer the capsule type endoscopes will largely enhance the ability to diagnose disease of digestive organs. In connection with it, most of researches have focused on an installable locomotive mechanism in the capsule. In this paper, it is introduced that the movement of a capsule type endoscope in digestive organ can be manipulated by magnetic force produced outside human body. Since the magnetic force is provided by permanent magnets, no additional power supply to the capsule is required. Using a robotic manipulator for locating the external magnet, the capsule motion control system can cover the whole human digestive organs. This study is particularly concentrated on dither motion effect to improve the mobility of capsule type endoscope. It was experimentally found out that the friction coefficient between the capsule and digestive organ can be remarkably reduced by superposing yawing or rolling dither motion on the translatory motion. In this paper, the experimental results obtained with the direction, amplitude and frequency of sinusoidal dither motion changed is reported.

The Cause Analysis on Fracture of Diesel Locomotive Engine Liner (디젤동차용 엔진 라이너 파손 원인에 관한 연구)

  • Kwon Sung-Tae;Kim Jung-Nam
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.674-679
    • /
    • 2004
  • In this study, we investigated the cause analysis on fracture of diesel locomotive engine liner, which was trouble assuming the inflow of cooling water. In order to reveal the cause of fracture, we studied the use history of engine, the drawing of production appearance and the stress distribution of engine in use. Also, we conducted experiments such as tension strength test, bending test and hardness test. Next, we observed fractured sections by SEM for the purposed of explaining the fracture mechanism of engine liner. Test results showed that fracture mechanism was brittle fracture due to coarse casting structure and stress concentration caused by manufacturing badness.

  • PDF

Experimental Study on the Movement of Pneumatic Actuating Mechanism for Self-Propelling Endoscope (자율주행 내시경을 위한 공압 구동장치의 이동특성에 관한 실험적 연구)

  • Lim, Young-Mo;Park, Ji-Sang;Kim, Byung-Kyu;Park, Jong-Oh;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.194-199
    • /
    • 2001
  • In this paper, we propose a new locomotive mechanism using impulsive force for microcapsule-type endoscope. It has the compact size for movement in the colon and actuating mechanisms for hi-directional movement. The actuating mechanism resembles a pneumatic cylinder and consists of body, inertia mass(piston). spring. pneumatic source and calve. When valve is ON, the pneumatic impulsive force between piston and body drives them in two opposite direction. As the air in the body is passed away, the contrary movements are occurred by spring reaction. Therefore, the direction of body's motion is determined by the relative magnitude of two opposite impulsive forces, i.e., pneumatic and spring force. The effect of two impulsive forces can simply be controlled by On-Off time of solenoid valve.

  • PDF

Locomotion Mechanism Using a Combination Cam with Multi-Phases (다중 위상차를 갖는 조합형 캠을 이용한 다족형 이동 메커니즘)

  • Kim, Kyung-Dae;Jeong, Youn-Koo;Kim, Byung-Kyu;Park, Jong-Oh
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2598-2604
    • /
    • 2002
  • Robots that can move along the narrow and rough tube are very important as the request for the inspection increases. It is necessary for the inspection robots to have a capability to move successfully at even overturned situation and have a simple mechanism to reduce the unexpected failure possibility fer the successful completion of the given mission. Through this paper, the authors propose a novel and simple mechanism using a combination cam device to generate the locomotive motion of multi-legs. This robot uses one DC motor and one combination cam shaft to generate the locomotive motion and can move rough tubes without failure even at the overturned situation. The robot also shows enough fragging force fer the connected line that is very important for a wired inspection robot. Kinematics analysis to design the specification of the robot will be followed and several applications show this robot's potential capabilities.

Research of Colonoscope Robot With Rotary Inertia Type Locomotion Mechanism (회전관성형 주행 메커니즘을 가진 내시경 로봇의 연구)

  • Lee, Jaewoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.521-526
    • /
    • 2016
  • This paper suggests a new design that makes use of rotary inertia that can allow autonomous movement of an autonomous colonoscope robot in the colon of a patient as a locomotive mechanism. As commercial colonoscopy causes a lengthy time of pain and discomfort to the patients when colonoscopy patients are reluctant to receive surgery, there is a tendency to avoid the test in the early diagnosis of colorectal cancer. To solve this problem, research has been conducted on the next generation of robotic colonoscopes that can reduce the discomfort and pain by moving autonomously within the colon of the patients. In the driving mechanism utilizing the rotational inertia, a flywheel is driven by a motor to store energy and produce rotational inertia. By the energy stored and released by the flywheel, the stick phenomenon that occurs when the robot is running in the intestine can be overcome effectively. To do this, a controller that can control the velocity of the flywheel and is robust to high frequency noise was designed and implemented. The driving mechanism using the rotational inertia presented here showed that the structure is also effective and the experiment can be run easily compared to another mechanism.

Test and Analysis for Comovement-Locomotive Hypothesis (동조화 현상의 견인차 가설 검정과 분석)

  • Kim, Tae-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.2
    • /
    • pp.239-251
    • /
    • 2011
  • The need for statistical analysis to discern the existence and the type of international business comovement has increased as business and economic variations in one country is directly transmitted to business and financial market conditions in another without a long lag. This study performs the statistical tests for th locomotive hypothesis to understand the structural character of the long-run mechanism among Korea-US current and future business movements and the domestic stock market. The U.S. future business prospect, rather than the US current and the domestic current and future business conditions, appears to signi cantl a ect the domestic stock market movement.

Influence of Dither Motion on the Friction Coefficient of a Capsule-type Endoscope (디더 운동이 캡슐형 내시경의 마찰계수 감소에 미치는 영향)

  • Hong Y.S.;Choi M.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1068-1073
    • /
    • 2005
  • Development of a locomotive mechanism for the capsule type endoscopes will largely enhance the ability to diagnose disease of digestive organs. In connection with it, most of the researches have focused on an installable locomotive mechanism in the capsule. In this paper, it is introduced that the movement of a capsule type endoscope in digestive organ can be manipulated by magnetic force produced outside human body. Since the magnetic force is provided by permanent magnets, no additional power supply to the capsule is required. Using a robotic manipulator for locating the external magnet, the capsule motion control system can cover the whole human digestive organs. This study is particularly concentrated on dither motion effect to improve the mobility of capsule type endoscope. It was experimentally found out that the friction coefficient between the capsule and digestive organ can be remarkably reduced by superposing yawing or rolling dither motion on the translatory motion. In this paper, the experimental results obtained while the direction, amplitude and frequency of sinusoidal dither motion were changed are reported.

  • PDF

Optimal design of an automatic walking robot based on Jansen's Mechanism (얀센 메커니즘을 이용한 자동주행 보행 로봇의 최적 설계)

  • Kim, Dong-Chan;Kim, Mu-Hwan;Lee, Min-Su;Park, Je-Yeol;Jo, Seong-Uk
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.540-546
    • /
    • 2017
  • Bipedal robots tend to have greater mobility than conventional treaded or wheeled robots yet they are commonly complicated by instabilities in balance. This paper presents a bipedal robot based upon Jansen's locomotive mechanism which addresses these challenges in stability and efficiency. In order to achieve a functioning robot, we considered a multitude of variables in its motion including, the Ground Score, Drag Score, step size, foot lift, stride, and instantaneous speed of the Jansen mechanism. Matlab and Jansen Opt solver were used to optimize the legs of the robot. A trial and error experimental method was used to determine the best combination of link lengths, and m.Sketch was used to model our results. Finally, we drew the entirety of the robot's figure by using the Edison design.

  • PDF