• Title/Summary/Keyword: locomotion

검색결과 438건 처리시간 0.023초

컴퓨터 디자인 기반 모노스키 버킷 사용에 따른 장애인 알파인 스키 선수의 운동학적 특성 변화 연구: 사례 연구 (Disabled Alpine Ski Athlete's Kinematic Characteristic Changes by Computer Aided Design Based Mono Ski Bucket: A Case Study)

  • 구도훈;은선덕;현보람;권효순
    • 한국운동역학회지
    • /
    • 제24권4호
    • /
    • pp.425-433
    • /
    • 2014
  • The purpose of the study was to investigate the effect of CAD (Computer Aided Design) based alpine mono-ski bucket design on disabled ski athletes' kinematic characteristics. Two national team ski athletes with LW11 disabilities (Locomotion Winter Classification) category for sit ski participated in both pre and post experiment. Both of the subjects performed 3 trials of carved turn on a ski slope under two conditions. Where, subject "A" performed pre experiment with personal bucket and post experiment with the newly developed CAD based bucket whereas, Subject "B" as control subject performed both pre and post experiment with his personal bucket. For the experiment, 24 Infrared cameras were positioned on the ski slope which covered the path of the ski turn. Also, motion capture suit with reflective markers were worn by both subjects. In the result, decrement in medial/lateral displacement of COM, anterior/posterior displacement of COM, flexion/extension angle of trunk as well as velocity losing rate of COM was observed in subject "A" when using the newly developed CAD based bucket. In contrast, no larger effect on performance was observed when using personal buckets. In conclusion, the findings obtained from the study indicated effectiveness of newly developed CAD based bucket by reducing excessive movement of hip and trunk which is an important factor to perform an effective turn.

Effect of Underwater Gait Training with a Progressive Increase in Speed on Balance, Gait, and Endurance in Stroke Patients

  • Kim, Heejoong;Chung, Yijung
    • The Journal of Korean Physical Therapy
    • /
    • 제31권4호
    • /
    • pp.204-211
    • /
    • 2019
  • Purpose: This study aimed to investigate the effect of progressive speed increase during underwater gait training on stroke patients' balance, gait, and endurance, as well as to compare the effects of underwater gait training and land gait training. Methods: Subjects were randomly allocated into three groups. Underwater gait training group (n=10), land gait training group (n=9) and control group (n=9). The groups performed their respective programs as well as conventional physical therapy 3 times/week for 8 weeks. The patients were assessed before and after the experiment in terms of the Berg balance scale, characteristics of gait, and 6-minute walking test. Results: The beneficial effect perceived in the speed increase underwater gait training (UGT) group was significantly greater than in the groups who were trained with speed increase land gait training (LGT) group, and the control group regarding the following aspects: the Berg balance scale, the affected step length, the affected stride length, and the 6-minute walking test (p<0.05). The LGT group showed a more significant effect on the Berg balance scale, the affected step length, the affected stride length, and the 6-minute walking test (p<0.05), compared to the control group. Furthermore, the UGT group showed a significantly greater effect on the gait speed when compared to the control groupb (p<0.05). Conclusion: This study shows that progressive UGT is effective in improving balance, gait, and endurance in stroke patients. Therefore, we believe that progressive UGT may be used as a method for general physical therapy in patients with stroke.

Neuroprotective Effects of Spinosin on Recovery of Learning and Memory in a Mouse Model of Alzheimer's Disease

  • Xu, Fanxing;He, Bosai;Xiao, Feng;Yan, Tingxu;Bi, Kaishun;Jia, Ying;Wang, Zhenzhong
    • Biomolecules & Therapeutics
    • /
    • 제27권1호
    • /
    • pp.71-77
    • /
    • 2019
  • Previous studies have shown that spinosin was implicated in the modulation of sedation and hypnosis, while its effects on learning and memory deficits were rarely reported. The aim of this study is to investigate the effects of spinosin on the improvement of cognitive impairment in model mice with Alzheimer's disease (AD) induced by $A{\beta}_{1-42}$ and determine the underlying mechanism. Spontaneous locomotion assessment and Morris water maze test were performed to investigate the impact of spinosin on behavioral activities, and the pathological changes were assayed by biochemical analyses and histological assay. After 7 days of intracerebroventricular (ICV) administration of spinosin ($100{\mu}g/kg/day$), the cognitive impairment of mice induced by $A{\beta}_{1-42}$ was significantly attenuated. Moreover, spinosin treatment effectively decreased the level of malondialdehyde (MDA) and $A{\beta}_{1-42}$ accumulation in hippocampus. $A{\beta}_{1-42}$ induced alterations in the expression of brain derived neurotrophic factor (BDNF) and B-cell lymphoma-2 (Bcl-2), as well as inflammatory response in brain were also reversed by spinosin treatment. These results indicated that the ameliorating effect of spinosin on cognitive impairment might be mediated through the regulation of oxidative stress, inflammatory process, apoptotic program and neurotrophic factor expression,suggesting that spinosin might be beneficial to treat learning and memory deficits in patients with AD via multi-targets.

장단기 고용량 카페인 투여가 청소년기 동물모델의 행동에 미치는 영향 (Influence of Short- and Long-term High-dose Caffeine Administration on Behavior in an Animal Model of Adolescence)

  • 박종민;김윤주;김하은;김연정
    • Journal of Korean Biological Nursing Science
    • /
    • 제21권3호
    • /
    • pp.217-223
    • /
    • 2019
  • Purpose: Caffeine is the most widely consumed psychostimulant of the methylxanthine class. Among adolescents, high-dose of caffeine consumption has increased rapidly over the last few decades due to the introduction of energy drinks. However, little is known about the time-dependent effect of high doses of caffeine consumption in adolescents. The present study aims to examine the short- and long-term influence of high-dose caffeine on behavior of adolescence. Methods: The animals were divided into three groups: a "vehicle" group, which was injected with 1 ml of phosphate-buffered saline for 14 days; a "Day 1" group, which was injected with caffeine (30 mg/kg), 2 h before the behavioral tests; and a "Day 14" group, which was infused with caffeine for 14 days. An open-field test, a Y-maze test, and a passive avoidance test were conducted to assess the rats'activity levels, anxiety, and cognitive function. Results: High-dose caffeine had similar effects in short-and long-term treatment groups. It increased the level of locomotor activity and anxiety-like behavior, as evidenced by the increase in the number of movements and incidences of rearing and grooming in the caffeine-treated groups. No significant differences were observed between the groups in the Y-maze test. However, in the passive avoidance test, the escape latency in the caffeine-treated group was decreased significantly, indicating impaired memory acquisition. Conclusion: These results indicate that high-dose caffeine in adolescents may increase locomotor activity and anxiety-like behavior and impair learning and memory, irrespective of the duration of administration. The findings will be valuable for both evidence-based education and clinical practice.

Animals models of spinal cord contusion injury

  • Verma, Renuka;Virdi, Jasleen Kaur;Singh, Nirmal;Jaggi, Amteshwar Singh
    • The Korean Journal of Pain
    • /
    • 제32권1호
    • /
    • pp.12-21
    • /
    • 2019
  • Spinal cord contusion injury is one of the most serious nervous system disorders, characterized by high morbidity and disability. To mimic spinal cord contusion in humans, various animal models of spinal contusion injury have been developed. These models have been developed in rats, mice, and monkeys. However, most of these models are developed using rats. Two types of animal models, i.e. bilateral contusion injury and unilateral contusion injury models, are developed using either a weight drop method or impactor method. In the weight drop method, a specific weight or a rod, having a specific weight and diameter, is dropped from a specific height on to the exposed spinal cord. Low intensity injury is produced by dropping a 5 g weight from a height of 8 cm, moderate injury by dropping 10 g weight from a height of 12.5-25 mm, and high intensity injury by dropping a 25 g weight from a height of 50 mm. In the impactor method, injury is produced through an impactor by delivering a specific force to the exposed spinal cord area. Mild injury is produced by delivering $100{\pm}5kdyn$ of force, moderate injury by delivering $200{\pm}10kdyn$ of force, and severe injury by delivering $300{\pm}10kdyn$ of force. The contusion injury produces a significant development of locomotor dysfunction, which is generally evident from the $0-14^{th}$ day of surgery and is at its peak after the $28-56^{th}$ day. The present review discusses different animal models of spinal contusion injury.

제브라피쉬에서의 제주도 천연추출물의 항스트레스 효과 (Anti-stress Effects of Natural Products from Jeju Island in Zebrafish)

  • 이정원;이승헌
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.85-85
    • /
    • 2019
  • Objective: In this study, the anti-stress effects of extract of Hydrangeae Dulcis Folium (EHDF) or ethalonic extract of Opuntiaficus-indica (EOF) of natural extracts from Jeju Island were investigated. Methods: We performed measurement of whole-body cortisol level and behavioral experiments including the novel tank test (NTT) or the open field test (OFT) to assess stress responses in zebrafish. To induce physical stress, we used the net handling stress (NHS). Fish were treated with EOF or EHDF for 6 min before they were exposed to stress. And then, we sacrificed fish for collecting body fluid from whole-body or conducted behavioural tests, including novel tank test and open field test, were evaluated to observe anxiety-like behaviours and locomotion. We used the cortisol enzyme-linked immunoassay kit to measure the amount of cortisol in each zebrafish sample. Results: The results indicate that increased anxiety-like behaviours in novel tank test and open field test under stress were prevented by treatment with both EOF and EHDF (P < 0.05). Moreover, compared with the unstressed group, which was not treated with NHS, the whole-body cortisol level was significantly increased by treatment with NHS. Compared with the NHS-treated stressed control group, pre-treatment with each EHDF and EOF for 6 min significantly prevented the NHS-increased whole-body cortisol level (P < 0.05). Conclusions: In conclusion these results suggest that both EOF and EHDF pretreatment may prevent stress responses and that its mechanism of action may be related to its positive effects on cortisol release.

  • PDF

온도 차이에 따른 배추좀나방 유충 지방체에서 발현되는 G 단백질 연관 수용체의 동정 (Identification of G Protein Coupled Receptors Expressed in Fat Body of Plutella Xylostella in Different Temperature Conditions)

  • 김광호;이대원
    • 한국환경농학회지
    • /
    • 제40권1호
    • /
    • pp.1-12
    • /
    • 2021
  • BACKGROUND: G protein-coupled receptors (GPCRs) are widely distributed in various organisms. Insect GPCRs shown as in vertebrate GPCRs are membrane receptors that coordinate or involve in various physiological processes such as learning/memory, development, locomotion, circadian rhythm, reproduction, etc. This study aimed to identify GPCRs expressed in fat body and compare the expression pattern of GPCRs in different temperature conditions. METHODS AND RESULTS: To identify GPCRs genes and compare their expression in different temperature conditions, total RNAs of fat body in Plutella xylostella larva were extracted and the transcriptomes have been analyzed via next generation sequencing method. From the fat body transcriptomes, genes that belong to GPCR Family A, B, and F were identified such as opsin, gonadotropin-releasing hormone receptor, neuropeptide F (NPF) receptor, muthuselah (Mth), diuretic hormone receptor, frizzled, etc. Under low temperature, expressions of GPCRs such as C-C chemokine receptor (CCR), opsin, prolactin-releasing peptide receptor, substance K receptor, Mth-like receptor, diuretic hormone receptor, frizzled and stan were higher than those at 25℃. They are involved in immunity, feeding, movement, odorant recognition, diuresis, and development. In contrast to the control (25℃), at high temperature GPCRs including CCR, gonadotropin-releasing hormone receptor, moody, NPF receptor, neuropeptide B1 receptor, frizzled and stan revealed higher expression whose biological functions are related to immunity, blood-brain barrier formation, feeding, learning, and reproduction. CONCLUSION: Transcriptome of fat body can provide understanding the pools of GPCRs. Identifications of fat body GPCRs may contribute to develop new targets for the control of insect pests.

Development of a New Pressure-Sinkage Model for Rover Wheel-Lunar Soil Interaction based on Dimensional Analysis and Bevameter Tests

  • Lim, Yujin;Le, Viet Dinh;Bahati, Pierre Anthyme
    • Journal of Astronomy and Space Sciences
    • /
    • 제38권4호
    • /
    • pp.237-250
    • /
    • 2021
  • A rover is a planetary surface exploration device designed to move across the ground on a planet or a planetary-like body. Exploration rovers are increasingly becoming a vital part of the search for scientific evidence and discoveries on a planetary satellite of the Sun, such as the Moon or Mars. Reliable behavior and predictable locomotion of a rover is important. Understanding soil behavior and its interaction with rover wheels-the terramechanics-is of great importance in rover exploration performance. Up to now, many researchers have adopted Bekker's semiempirical model to predict rover wheelsoil interaction, which is based on the assumption that soil is deformable when a pressure is applied to it. Despite this basic assumption of the model, the pressure-sinkage relation is not fully understood, and it continues to present challenges for rover designers. This article presents a new pressure-sinkage model based on dimensional analysis (DA) and results of bevameter tests. DA was applied to the test results in order to propose a new pressure-sinkage model by reducing physical quantitative parameters. As part of the work, a new bevameter was designed and built so that it could be successfully used to obtain a proper pressure-sinkage relation of Korean Lunar Soil Simulant (KLS-1). The new pressure-sinkage model was constructed by using three different sizes of flat plate diameters of the bevameter. The newly proposed model was compared successfully with other models for validation purposes.

Construction of the Mobility to Participation Assessment Scale for Stroke (MPASS) and Testing Its Validity and Reliability in Persons With Stroke in Thailand

  • Nawarat, Jiraphat;Chaipinyo, Kanda
    • Journal of Preventive Medicine and Public Health
    • /
    • 제55권4호
    • /
    • pp.334-341
    • /
    • 2022
  • Objectives: This study was conducted to develop the Mobility to Participation Assessment Scale for Stroke (MPASS) and assess its content validity, internal consistency, inter-rater and intra-rater reliability, and convergent validity in people with stroke living in the community. Methods: The MPASS was developed using published data on mobility-related activity and participation timing in elderly individuals, and then reviewed by community physical therapists. Content validity was established by reaching a consensus of experienced physical therapists in a focus group. The MPASS was scored for 32 participants with stroke (mean age 61.75±4.92 years) by 3 individual testers. Reliability was examined using the intraclass correlation coefficient (ICC), internal consistency using the Cronbach alpha coefficient (α), and convergent validity using the Pearson correlation coefficient (r) to compare the MPASS to the Modified Rivermead Mobility Index as a referent test of mobility. Results: The MPASS consists of 8 items, and its scoring system provides information on the ability of people with stroke to reach a movement level enabling them to live in society, including interactions with other people and safe living in the community. The interrater and intra-rater reliability were excellent (ICC, 0.948; 95% confidence interval [CI], 0.893 to 0.982 and ICC, 0.967; 95% CI, 0.933 to 0.989, respectively). Internal consistency was good (α=0.877). The convergent validity was moderate (r=0.646; p<0.001). Conclusions: The newly developed MPASS showed acceptable construct validity and high reliability. The MPASS is suitable for use in people with stroke, especially those who have been discharged and live in the community with the ability to initiate sitting.

The effects of early exercise in traumatic brain-injured rats with changes in motor ability, brain tissue, and biomarkers

  • Kim, Chung Kwon;Park, Jee Soo;Kim, Eunji;Oh, Min-Kyun;Lee, Yong-Taek;Yoon, Kyung Jae;Joo, Kyeung Min;Lee, Kyunghoon;Park, Young Sook
    • BMB Reports
    • /
    • 제55권10호
    • /
    • pp.512-517
    • /
    • 2022
  • Traumatic brain injury (TBI) is brain damage which is caused by the impact of external mechanical forces. TBI can lead to the temporary or permanent impairment of physical and cognitive abilities, resulting in abnormal behavior. We recently observed that a single session of early exercise in animals with TBI improved their behavioral performance in the absence of other cognitive abnormalities. In the present study, we investigated the therapeutic effects of continuous exercise during the early stages of TBI in rats. We found that continuous low-intensity exercise in early-stage improves the locomotion recovery in the TBI of animal models; however, it does not significantly enhance short-term memory capabilities. Moreover, continuous early exercise not only reduces the protein expression of cerebral damage-related markers, such as Glial Fibrillary Acid Protein (GFAP), Neuron-Specific Enolase (NSE), S100β, Protein Gene Products 9.5 (PGP9.5), and Heat Shock Protein 70 (HSP70), but it also decreases the expression of apoptosis-related protein BAX and cleaved caspase 3. Furthermore, exercise training in animals with TBI decreases the microglia activation and the expression of inflammatory cytokines in the serum, such as CCL20, IL-13, IL-1α, and IL-1β. These findings thus demonstrate that early exercise therapy for TBI may be an effective strategy in improving physiological function, and that serum protein levels are useful biomarkers for the predicition of the effectiveness of early exercise therapy.