Influence of Short- and Long-term High-dose Caffeine Administration on Behavior in an Animal Model of Adolescence |
Park, Jong-Min
(College of Nursing Science, Kyung Hee University)
Kim, Yoonju (College of Nursing Science, Kyung Hee University) Kim, Haeun (College of Nursing Science, Kyung Hee University) Kim, Youn-Jung (College of Nursing Science, Kyung Hee University) |
1 | Wesnes KA, Brooker H, Watson AW, Bal W, Okello E. Effects of the Red Bull energy drink on cognitive function and mood in healthy young volunteers. Journal of Psychopharmacology. 2017;31(2):211-221. https://doi.org/10.1177/0269881116681459 DOI |
2 | Committee on Nutrition and the Council on Sports Medicine and Fitness. Sports drinks and energy drinks for children and adolescents: are they appropriate? Pediatrics. 2011;127(6):1182-1189. https://doi.org/10.1542/peds.2011-0965 DOI |
3 | Silva CG, Metin C, Fazeli W, Machado NJ, Darmopil S, Launay PS, et al. Adenosine receptor antagonists including caffeine alter fetal brain development in mice. Science Translational Medicine. 2013;5(197):197ra104. https://doi.org/10.1126/scitranslmed.3006258 DOI |
4 | Porciuncula LO, Sallaberry C, Mioranzza S, Botton PH, Rosemberg DB. The Janus face of caffeine. Neurochemistry International. 2013;63(6):594-609. https://doi.org/10.1016/j.neuint.2013.09.009 DOI |
5 | Bernstein GA, Carroll ME, Crosby RD, Perwien AR, Go FS, Benowitz NL. Caffeine effects on learning, performance, and anxiety in normal school-age children. Journal of the American Academy of Child and Adolescent Psychiatry. 1994;33(3):407-415. https://doi.org/10.1097/00004583-199403000-00016 DOI |
6 | Nehlig A. Are we dependent upon coffee and caffeine? A review on human and animal data. Neuroscience and Biobehavioral Reviews. 1999;23(4):563-576. https://doi.org/10.1016/s0149-7634(98)00050-5 DOI |
7 | Angelucci ME, Vital MA, Cesario C, Zadusky CR, Rosalen PL, Da Cunha C. The effect of caffeine in animal models of learning and memory. European journal of pharmacology. 1999;373(2-3):135-140. https://doi.org/10.1016/s0014-2999(99)00225-3 DOI |
8 | Rhoads DE, Huggler AL, Rhoads LJ. Acute and adaptive motor responses to caffeine in adolescent and adult rats. Pharmacology Biochemistry, and Behavior. 2011;99(1):81-86. https://doi.org/10.1016/j.pbb.2011.04.001 DOI |
9 | Wang Y, Lau CE. Caffeine has similar pharmacokinetics and behavioral effects via the ip and po routes of administration. Pharmacology Biochemistry and Behavior. 1998;60(1):271-278. https://doi.org/10.1016/s0091-3057(97)00595-9 DOI |
10 | Sengupta P. The Laboratory Rat: Relating Its Age With Human's. International journal of preventive medicine. 2013;4(6):624-630. |
11 | Guarino MP, Ribeiro MJ, Sacramento JF, Conde SV. Chronic caffeine intake reverses age-induced insulin resistance in the rat: effect on skeletal muscle Glut4 transporters and AMPK activity. Age. 2013;35(5):1755-1765. https://doi.org/10.1007/s11357-012-9475-x DOI |
12 | Conde SV, da Silva TN, Gonzalez C, Carmo MM, Monteiro EC, Guarino MP. Chronic caffeine intake decreases circulating catecholamines and prevents diet-induced insulin resistance and hypertension in rats. British Journal of Nutrition. 2012;107(01):86-95. https://doi.org/10.1017/s0007114511002406 DOI |
13 | Diaz-Moran S, Estanislau C, Ca T, Blazquez G, Raez A, Tobe A, et al. Relationships of open-field behaviour with anxiety in the elevated zero-maze test: focus on freezing and grooming. World Journal of Neuroscience. 2014;2014. https://doi.org/10.4236/wjns.2014.41001 |
14 | Marin MT, Zancheta R, Paro AH, Possi AP, Cruz FC, Planeta CS. Comparison of caffeine-induced locomotor activity between adolescent and adult rats. European Journal of Pharmacology. 2011;660(2-3):363-367. https://doi.org/10.1016/j.ejphar.2011.03.052 DOI |
15 | O'Neill CE, Newsom RJ, Stafford J, Scott T, Archuleta S, Levis SC, et al. Adolescent caffeine consumption increases adulthood anxiety-related behavior and modifies neuroendocrine signaling. Psychoneuroendocrinology. 2016;67:40-50. https://doi.org/10.1016/j.psyneuen.2016.01.030 DOI |
16 | Pan H, Chen H. Hyperalgesia, low-anxiety, and impairment of avoidance learning in neonatal caffeine-treated rats. Psychopharmacology. 2007;191(1):119-125. https://doi.org/10.1007/s00213-006-0613-y DOI |
17 | Escorihuela R, Fernandez-Teruel A, Gil L, Aguilar R, Tobena A, Driscoll P. Inbred Roman high-and low-avoidance rats: differences in anxiety, novelty-seeking, and shuttle box behaviors. Physiology & Behavior. 1999;67(1):19-26. https://doi.org/10.1016/s0031-9384(99)00064-5 DOI |
18 | Klaassen EB, de Groot RH, Evers EA, Snel J, Veerman EC, Ligtenberg AJ, et al. The effect of caffeine on working memory load-related brain activation in middle-aged males. Neuropharmacology. 2013;64:160-167. https://doi.org/10.1016/j.neuropharm.2012.06.026 DOI |
19 | Soellner DE, Grandys T, Nunez JL. Chronic prenatal caffeine exposure impairs novel object recognition and radial arm maze behaviors in adult rats. Behavioural Brain Research. 2009;205(1):191-199. https://doi.org/10.1016/j.bbr.2009.08.012 DOI |
20 | Kandel ER, Dudai Y, Mayford MR. The molecular and systems biology of memory. Cell. 2014;157(1):163-186. https://doi.org/10.1016/j.cell.2014.03.001 DOI |
21 | Uddin MS, Sufian MA, Hossain MF, Kabir MT, Islam MT, Rahman MM, et al. Neuropsychological effects of caffeine: Is caffeine addictive. Journal of Psychology & Psychotherapy. 2017;7(2):1-12. https://doi.org/10.4172/2161-0487.1000295 |
22 | Grosso G, Godos J, Galvano F, Giovannucci EL. Coffee, caffeine, and health outcomes: an umbrella review. Annual Review of Nutrition. 2017;37:131-156. https://doi.org/10.1146/annurev-nutr-071816-064941 DOI |
23 | Ardais A, Borges M, Rocha A, Sallaberry C, Cunha R, Porciuncula L. Caffeine triggers behavioral and neurochemical alterations in adolescent rats. Neuroscience. 2014;270:27-39. https://doi.org/10.1016/j.neuroscience.2014.04.003 DOI |
24 | Murner-Lavanchy IM, Doyle LW, Schmidt B, Roberts RS, Asztalos EV, Costantini L, et al. Neurobehavioral outcomes 11 years after neonatal caffeine therapy for apnea of prematurity. Pediatrics. 2018;141(5): e20174047. https://doi.org/10.1542/peds.2017-4047 DOI |
25 | Sallaberry C, Nunes F, Costa MS, Fioreze GT, Ardais AP, Botton PH, et al. Chronic caffeine prevents changes in inhibitory avoidance memory and hippocampal BDNF immunocontent in middle-aged rats. Neuropharmacology. 2013:64:153-159. https://doi.org/10.1016/j.neuropharm.2012.07.010 DOI |
26 | Panza F, Solfrizzi V, Barulli M, Bonfiglio C, Guerra V, Osella A, et al. Coffee, tea, and caffeine consumption and prevention of late-life cognitive decline and dementia: a systematic review. The Journal of Nutrition, Health & Aging. 2015;19(3):313-328. https://doi.org/10.1007/s12603-014-0563-8 DOI |
27 | Bava S, Tapert SF. Adolescent brain development and the risk for alcohol and other drug problems. Neuropsychology Review. 2010;20(4):398-413. https://doi.org/10.1007/s11065-010-9146-6 DOI |
28 | Branum AM, Rossen LM, Schoendorf KC. Trends in caffeine intake among U.S. children and adolescents. Pediatrics. 2014;133(3):386-393. http://dx.doi.org/10.1542/peds.2013-2877. DOI |
29 | Seifert SM, Schaechter JL, Hershorin ER, Lipshultz SE. Health effects of energy drinks on children, adolescents, and young adults. Pediatrics. 2011;127(3):511-528. http://dx.doi.org/10.1542/peds.2009-3592 DOI |
30 | Taylor DJ, Clay KC, Bramoweth AD, Sethi K, Roane BM. Circadian phase preference in college students: relationships with psychological functioning and academics. Chronobiology International. 2011;28(6):541-547. https://doi.org/10.3109/07420528.2011.580870 DOI |