• Title/Summary/Keyword: locking

Search Result 993, Processing Time 0.03 seconds

Ulnar Nerve Injury Caused by the Incomplete Insertion of a Screw Head after Internal Fixation with Dual Locking Plates in AO/OTA Type C2 Distal Humerus Fractures

  • Shin, Jae-Hyuk;Kwon, Whan-Jin;Hyun, Yoon-Suk
    • Clinics in Shoulder and Elbow
    • /
    • v.20 no.4
    • /
    • pp.236-239
    • /
    • 2017
  • After dual plating with a locking compression plate for comminuted intraarticular fractures of the distal humerus, the incidence of ulnar nerve injury after surgery has been reported to be up to 38%. This can be reduced by an anterior transposition of the ulnar nerve but some surgeons believe that extensive handling of the nerve with transposition can increase the risk of an ulnar nerve dysfunction. This paper reports ulnar nerve injuries caused by the incomplete insertion of a screw head in dual plating without an anterior ulnar nerve transposition for AO/OTA type C2 distal humerus fractures. When an anatomical locking plate is applied to a distal humeral fracture, locking screws around the ulnar nerve should be inserted fully without protrusion of the screw because an incompletely inserted screw can cause irritation or injury to the ulnar nerve because the screw head in the locking system usually has a slightly sharp edge because screw head has threads. If the change in insertion angle and resulting protruded head of the screw are unavoidable for firm fixation of fracture, the anterior transposition of the ulnar nerve is recommended over a soft tissue shield.

DEVELOPMENT OF A MACHINE VISION SYSTEM FOR AN AUTOMOBILE PLASTIC PART INSPECTION

  • ANDRES N.S.;MARIMUTHU R.P.;EOM Y.K.;JANG B.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1131-1135
    • /
    • 2005
  • Since human is vulnerable to emotional, physical and environmental distractions, most human inspectors cannot sustain a consistent 8-hour inspection in a day specifically for small components like door locking levers. As an alternative for human inspection, presented in this study is the development of a machine vision inspection system (MVIS) purposely for door locking levers. Comprises the development is the structure of the MVIS components, designed to meet the demands, features and specifications of door locking lever manufacturing companies in increasing their production throughput upon keeping the quality assured. This computer-based MVIS is designed to perform quality measures of detecting missing portions and defects like burr on every door locking lever. NI Vision Builder software for Automatic Inspection (AI) is found to be the optimum solution in configuring the needed quality measures. The proposed software has measurement techniques such as edge detecting and pattern-matching which are capable of gauging, detecting missing portion and checking alignment. Furthermore, this study exemplifies the incorporation of the optimized NI Builder inspection environment to the pre-inspection and post-inspection subsystems.

  • PDF

Self-injection-locked Divide-by-3 Frequency Divider with Improved Locking Range, Phase Noise, and Input Sensitivity

  • Lee, Sanghun;Jang, Sunhwan;Nguyen, Cam;Choi, Dae-Hyun;Kim, Jusung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.4
    • /
    • pp.492-498
    • /
    • 2017
  • In this paper, we integrate a divide-by-3 injection-locked frequency divider (ILFD) in CMOS technology with a $0.18-{\mu}m$ BiCMOS process. We propose a self-injection technique that utilizes harmonic conversion to improve the locking range, phase-noise, and input sensitivity simultaneously. The proposed self-injection technique consists of an odd-to-even harmonic converter and a feedback amplifier. This technique offers the advantage of increasing the injection efficiency at even harmonics and thus realizes the low-power implementation of an odd-order division ILFD. The measurement results using the proposed self-injection technique show that the locking range is increased by 47.8% and the phase noise is reduced by 14.7 dBc/Hz at 1-MHz offset frequency with the injection power of -12 dBm. The designed divide-by-3 ILFD occupies $0.048mm^2$ with a power consumption of 18.2-mW from a 1.8-V power supply.

Vector Passive Harmonic Mode-locking Fiber Laser Based on Topological Insulator Bi2Se3 Interacting with Fiber Taper

  • Li, Jian Ping
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.135-139
    • /
    • 2016
  • I propose a vector passive harmonic mode-locked fiber laser based on topological insulator Bi2Se3 interacting with a fiber taper with a diameter of 7 μm. The particles of topological insulator are deposited uniformly onto the fiber taper with light pressure effect. By incorporating the fabricated saturable absorber into an Er-doped fiber laser cavity, stable mode-locked fiber is obtained. Due to the intense evanescent field of the fiber taper, strong confinement of light enhances the nonlinearity of the laser cavity, and passive harmonic mode-locking is performed. I observe a maximum harmonic mode-locking of 356th, corresponding to a frequency of 3.57 GHz. The pulse duration is 824 fs, and the full width at half maximum of the spectrum is about 8.2 nm. The polarization dependent loss of the saturable absorber is ~ 2.5 dB in the wavelength range of the C band. As the cavity contains no other polarization dependent device, the mode-locked laser is functioning in the vector state. The harmonic order vs pump power is investigated. To the best of our knowledge, this report is the highest frequency mode-locked fiber laser based on Bi2Se3. Experimental results indicate that the topological insulator Bi2Se3 functioning with a thin fiber taper is effective for vector harmonic mode-locking.

Design of Subharmonic Injection Locked Oscillator (부고조파를 이용한 X-band 주입 동기 발진기 설계 및 제작)

  • 전영상;이문규;남상욱
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.5
    • /
    • pp.653-662
    • /
    • 1999
  • In this paper, subharmonically injection locked oscillator(SILO) was designed and measured. SILO with series feedback was designed using Two Signal Method(TSM). The free-running oscillator frequency was 9.4 GHz with 6 dBm output power. In case of injection, the multiplied injected signal locked the free-running frequency. The locked signal output power was higher than any other spurious response at least 40 dB. The locking range was 220MHz (second subharmonic locking), 100 MHz(4th subharmonic locking), and phase noise was -111 dBc/Hz, -104 dBc/Hz at 100kHz offset, respectively.

  • PDF

A Study on the Lightwave off-set Locking using Frequency Difference Detector (주파수 차이 검출기를 이용한 광파의 off-set 주파수 로킹 연구)

  • 유강희
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.484-493
    • /
    • 2004
  • A new lightwave locking technique which can be used in tuning the wavelength of a local laser diode to the reference wavelength is presented in this paper. The optical frequency from the reference laser source and the optical frequency from the local slave VCO laser are heterodyned on a optical receiver, resulting in the 1.5GHz RF signal corresponding to the difference frequency between two input optical signals. The difference frequency is locked to the reference 1.5GHz oscillator source in off-set frequency locking loop. Using the commercialized microwave components, frequency difference detector can be easily established to lock the lightwave. The optical frequency of 1.55um laser diode which keeps the frequency off-set of 1.5GHz is locked to the input reference optical signal with the locking range of 320MHz.

Study of Locking Algorithms for a On/Off Multi-plate Clutch (동력절환용 클러치의 기계식 잠금장치 체결 알고리즘에 대한 연구)

  • Su Chul Kim;Jae Seung Kim;Sanggon Moon;Geun Ho Lee
    • Journal of Drive and Control
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • The locking performance of a multi-plate clutch with a mechanical lock-up system is governed by the engagement algorithm. In this paper, a control algorithm to improve the locking performance of the clutch was studied. A 1D dynamic model was constructed and simulated according to the developed algorithm. The developed algorithm was composed of a method in which the locking device is engaged while generating artificial slip on the friction plate by controlling the piston pressure of the clutch. Furthermore, a case study of the parameters within the developed algorithm was conducted to explore combinations that maximize locking performance and analyze trends according to these parameters.

Remote-controlled micro locking mechanism for plate-type nuclear fuel used in upflow research reactors

  • Jin Haeng Lee;Yeong-Garp Cho;Hyokwang Lee;Chang-Gyu Park;Jong-Myeong Oh;Yeon-Sik Yoo;Min-Gu Won;Hyung Huh
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4477-4490
    • /
    • 2023
  • Fuel locking mechanisms (FLMs) are essential in upward-flow research reactors to prevent accidental fuel separation from the core during reactor operation. This study presents a novel design concept for a remotely controlled plate-type nuclear fuel locking mechanism. By employing electromagnetic field analysis, we optimized the design of the electromagnet for fuel unlocking, allowing the FLM to adapt to various research reactor core designs, minimizing installation space, and reducing maintenance efforts. Computational flow analysis quantified the drag acting on the fuel assembly caused by coolant upflow. Subsequently, we performed finite element analysis and evaluated the structural integrity of the FLM based on the ASME boiler and pressure vessel (B&PV) code, considering design loads such as dead weight and flow drag. Our findings confirm that the new FLM design provides sufficient margins to withstand the specified loads. We fabricated a prototype comprising the driving part, a simplified moving part, and a dummy fuel assembly. Through basic operational tests on the assembled components, we verified that the manufactured products meet the performance requirements. This remote-controlled micro locking mechanism holds promise in enhancing the safety and efficiency of plate-type nuclear fuel operation in upflow research reactors.

Multi-version Locking Scheme for Flash Memory Devices (플래시 메모리 기기를 위한 다중 버전 잠금 기법)

  • Byun, Si-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.191-193
    • /
    • 2005
  • Flash memories are one of best media to support portable computer's storages. However, we need to improve traditional data management scheme due to the relatively slow characteristics of flash operation as compared to RAM memory. In order to achieve this goal, we devise a new scheme called Flash Two Phase Locking (F2PL) scheme for efficient data processing. F2PL improves transaction performance by allowing multi version reads and efficiently handling slow flash write/erase operation in lock management process.

  • PDF

Design of Dual PFD with Improved Phase Locking Time (위상동기시간을 개선한 Dual PFD 설계)

  • 이준호;손주호;김선홍;김동용
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.275-278
    • /
    • 1999
  • In this paper, Dual PFD(Phase Frequency Detector) with improved phase locking time is proposed. The proposed PFD consists of positive and negative edge triggered D flip-flop. In order to confirm the characteristics of proposed PFD, HSPICE simulations are performed using a 0.25${\mu}{\textrm}{m}$ CMOS process. As a result of simulations, the proposed PFD has a characteristic of fast phase locking time with dead zone free.

  • PDF