• Title/Summary/Keyword: location-prediction

Search Result 741, Processing Time 0.029 seconds

Indoor RSSI Characterization using Statistical Methods in Wireless Sensor Network (무선 센서네트워크에서의 통계적 방법에 의한 실내 RSSI 측정)

  • Pu, Chuan-Chin;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.457-461
    • /
    • 2007
  • In many applications, received signal strength indicator is used for location tracking and sensor nodes localization. For location finding, the distances between sensor nodes can be estimated by converting received signal's power into distance using path loss prediction model. Many researches have done the analysis of power-distance relationship for radio channel characterization. In indoor environment, the general conclusion is the non-linear variation of RSSI values as distance varied linearly. This has been one of the difficulties for indoor localization. This paper presents works on indoor RSSI characterization based on statistical methods to find the overall trend of RSSI variation at different places and times within the same room From experiments, it has been shown that the variation of RSSI values can be determined by both spatial and temporal factors. This two factors are directly indicated by the two main parameters of path loss prediction model. The results show that all sensor nodes which are located at different places share the same characterization value for the temporal parameter whereas different values for the spatial parameters. Using this relationship, the characterization for location estimation can be more efficient and accurate.

  • PDF

A Spatiotemporal Location Prediction Method of Moving Objects Based on Path Data (이동 경로 데이터에 기반한 이동 객체의 시공간 위치 예측 기법)

  • Yoon, Tae-Bok;Park, Kyo-Hyun;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.568-574
    • /
    • 2006
  • User adaptive services have been important features in many applications. To provide such services, various techniques with various kinds of data are being used. In this paper, we propose a method to analyze user's past moving paths and predict the goal position and the path to the goal by observing the user's current moving path. We develop a spatiotemporal similarity measure between paths. We choose a past path which is the most similar to the current path using the similarity. Based on the chosen path, user's spatiotemporal position is estimated. Through experiments we confirm this method is useful and effective.

The Effect of Process Models on Short-term Prediction of Moving Objects for Autonomous Driving

  • Madhavan Raj;Schlenoff Craig
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.509-523
    • /
    • 2005
  • We are developing a novel framework, PRIDE (PRediction In Dynamic Environments), to perform moving object prediction (MOP) for autonomous ground vehicles. The underlying concept is based upon a multi-resolutional, hierarchical approach which incorporates multiple prediction algorithms into a single, unifying framework. The lower levels of the framework utilize estimation-theoretic short-term predictions while the upper levels utilize a probabilistic prediction approach based on situation recognition with an underlying cost model. The estimation-theoretic short-term prediction is via an extended Kalman filter-based algorithm using sensor data to predict the future location of moving objects with an associated confidence measure. The proposed estimation-theoretic approach does not incorporate a priori knowledge such as road networks and traffic signage and assumes uninfluenced constant trajectory and is thus suited for short-term prediction in both on-road and off-road driving. In this article, we analyze the complementary role played by vehicle kinematic models in such short-term prediction of moving objects. In particular, the importance of vehicle process models and their effect on predicting the positions and orientations of moving objects for autonomous ground vehicle navigation are examined. We present results using field data obtained from different autonomous ground vehicles operating in outdoor environments.

Development of technique for slope hazards prediction using decision tree model (의사결정나무모형을 이용한 급경사지재해 예측기법 개발)

  • Song, Young-Suk;Cho, Yong-Chan;Chae, Byung-Gon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.233-242
    • /
    • 2009
  • Based on the data obtained from field investigation and soil testing to slope hazards occurrence section and non-occurrence section in crystalline rocks like gneiss, granite, and so on, a prediction model was developed by the use of a decision tree model. The classification standard of the selected prediction model is composed of the slope angle, the coefficient of permeability and the void ratio in the order. The computer program, SHAPP ver. 1.0 for prediction of slope hazards around an important national facilities using GIS technique and the developed model. To prove the developed prediction model and the computer program, the field data surveyed from Jumunjin, Gangneung city were compared with the prediction result in the same site. As the result of comparison, the real occurrence location of slope hazards was similar to the predicted section. Through the continuous study, the accuracy about prediction result of slope hazards will be upgraded and the computer program will be commonly used in practical.

  • PDF

An Intelligent Handover Scheme for the Next Generation Personal Communication Systems

  • Ming-Hui;Kuang, Eric-Hsiao;Chao-Hsu
    • Journal of Communications and Networks
    • /
    • v.6 no.3
    • /
    • pp.245-257
    • /
    • 2004
  • Driven by the growing number of the mobile subscribers, efficient channel resource management plays a key role for provisioning multimedia service in the next generation personal communication systems. To reuse limited channel resources, diminishing the coverage areas of cells seems to be the ultimate solution. Thus, however, causes more handover events. To provide seamless connection environment for mobile terminals and applications, this article presents a novel handover scheme called the intelligent channel reservation (ICR) scheme, which exploits the location prediction technologies to accurately reserve channel resources for handover connections. Considering the fact that each mobile terminal has its individual mobility characteristic, the ICR scheme utilizes a channel reserving notification procedure (CRNP) to collect adequate parameters for predicting the future location of individual mobile terminals. These parameters will be utilized by the handover prediction function to estimate the expected handover blocking rate and the expected number of idle channels. Based on the handover prediction estimations, a cost function for calculating the damages from blocking the handover connections and idling channel resources, and a corresponding algorithm for minimizing the cost function are proposed. In addition, a guard channel decision maker (GCDM) determines the appropriate number of guard channels. The experimental results show that the ICR scheme does reduce the handover-blocking rate while keeping the number of idle channels small.

Ship Motion-Based Prediction of Damage Locations Using Bidirectional Long Short-Term Memory

  • Son, Hye-young;Kim, Gi-yong;Kang, Hee-jin;Choi, Jin;Lee, Dong-kon;Shin, Sung-chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.295-302
    • /
    • 2022
  • The initial response to a marine accident can play a key role to minimize the accident. Therefore, various decision support systems have been developed using sensors, simulations, and active response equipment. In this study, we developed an algorithm to predict damage locations using ship motion data with bidirectional long short-term memory (BiLSTM), a type of recurrent neural network. To reflect the low frequency ship motion characteristics, 200 time-series data collected for 100 s were considered as input values. Heave, roll, and pitch were used as features for the prediction model. The F1-score of the BiLSTM model was 0.92; this was an improvement over the F1-score of 0.90 of a prior model. Furthermore, 53 of 75 locations of damage had an F1-score above 0.90. The model predicted the damage location with high accuracy, allowing for a quick initial response even if the ship did not have flood sensors. The model can be used as input data with high accuracy for a real-time progressive flooding simulator on board.

A Study on the Prediction of Traffic Accidents Using Artificial Intelligence (인공지능을 활용한 교통사고 발생 예측에 대한 연구)

  • Kim, Ga-eul;Kim, Jeong-hyeon;Son, Hye-ji;Kim, Dohyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.389-391
    • /
    • 2021
  • Traffic regulations are expanding to prevent traffic accidents for people's safety, but traffic accidents are not decreasing. In this study, the probability of traffic accidents occurring at a specific time and place is estimated by analyzing various factors such as weather forecast data from the Meteorological Agency, day of the week, time of day, location data, and location information. This study combines objective data on the occurrence of numerous previous traffic accidents with various additional elements not considered in previous studies to derive a more improved traffic accident probability prediction model. The results of this study can be effectively used for various transportation-related services for the safety of people.

  • PDF

Selection of the Number and Location of Monitoring Sensors using Artificial Neural Network based on Building Structure-System Identification (인공신경망 기반 건물 구조물 식별을 통한 모니터링센서 설치 개수 및 위치 선정)

  • Kim, Bub-Ryur;Choi, Se-Woon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.303-310
    • /
    • 2020
  • In this study, a method for selection of the location and number of monitoring sensors in a building structure using artificial neural networks is proposed. The acceleration-history values obtained from the installed accelerometers are defined as the input values, and the mass and stiffness values of each story in a building structure are defined as the output values. To select the installation location and number of accelerometers, several installation scenarios are assumed, artificial neural networks are obtained, and the prediction performance is compared. The installation location and number of sensors are selected based on the prediction accuracy obtained in this study. The proposed method is verified by applying it to 6- and 10-story structure examples.

Friendship Influence on Mobile Behavior of Location Based Social Network Users

  • Song, Yang;Hu, Zheng;Leng, Xiaoming;Tian, Hui;Yang, Kun;Ke, Xin
    • Journal of Communications and Networks
    • /
    • v.17 no.2
    • /
    • pp.126-132
    • /
    • 2015
  • In mobile computing research area, it is highly desirable to understand the characteristics of user movement so that the user friendly location aware services could be rendered effectively. Location based social networks (LBSNs) have flourished recently and are of great potential for movement behavior exploration and datadriven application design. While there have been some efforts on user check-in movement behavior in LBSNs, they lack comprehensive analysis of social influence on them. To this end, the social-spatial influence and social-temporal influence are analyzed synthetically in this paper based on the related information exposed in LBSNs. The check-in movement behaviors of users are found to be affected by their social friendships both from spatial and temporal dimensions. Furthermore, a probabilistic model of user mobile behavior is proposed, incorporating the comprehensive social influence model with extent personal preference model. The experimental results validate that our proposed model can improve prediction accuracy compared to the state-of-the-art social historical model considering temporal information (SHM+T), which mainly studies the temporal cyclic patterns and uses them to model user mobility, while being with affordable complexity.

Development of Data Visualized Web System for Virtual Power Forecasting based on Open Sources based Location Services using Deep Learning (오픈소스 기반 지도 서비스를 이용한 딥러닝 실시간 가상 전력수요 예측 가시화 웹 시스템)

  • Lee, JeongHwi;Kim, Dong Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1005-1012
    • /
    • 2021
  • Recently, the use of various location-based services-based location information systems using maps on the web has been expanding, and there is a need for a monitoring system that can check power demand in real time as an alternative to energy saving. In this study, we developed a deep learning real-time virtual power demand prediction web system using open source-based mapping service to analyze and predict the characteristics of power demand data using deep learning. In particular, the proposed system uses the LSTM(Long Short-Term Memory) deep learning model to enable power demand and predictive analysis locally, and provides visualization of analyzed information. Future proposed systems will not only be utilized to identify and analyze the supply and demand and forecast status of energy by region, but also apply to other industrial energies.