• Title/Summary/Keyword: location information based routing protocol

Search Result 82, Processing Time 0.026 seconds

Ad hoc Network for Dynamic Multicast Routing Protocol Using ADDMRP

  • Chi, Sam-Hyun;Kim, Sung-Uk;Lee, Kang-Whan
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.3
    • /
    • pp.209-214
    • /
    • 2007
  • In this paper, we proposed a new MANET (Mobile Ad hoc Networks) technology of routing protocol. The MANET has a mobility formation of mobile nodes in the wireless networks. Wireless network have two types architecture: the Tree based multicast and shared tree based. The two kind's architecture of general wireless networks have difficult to solve the problems existing in the network, such as connectivity, safety, and reliability. For this purpose, as using that ADDMRP (Ad hoc network Doppler effect-based for Dynamic Multicast Routing Protocol), this study gives the following suggestion for new topology through network durability and Omni-directional information. The proposed architectures have considered the mobility location, mobility time, density, velocity and simultaneous using node by Doppler effects and improved the performance.

Energy-Balanced Location-Aided Routing Protocol for E-Health Systems

  • Su, Haoru;Nguyen-Xuan, Sam;Nam, Heungwoo;An, Sunshin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.101-103
    • /
    • 2011
  • E-Health is one of the most promising applications of wireless sensor networks. This paper describes a prototype for e-Health systems. Based on the system, we propose the energy-balanced location-aided routing protocol. The location and energy information of the neighbor Coordinators is collected and stored in the neighbor discovery procedure. And then the Coordinator selects the most suitable neighbor to forward the data. The simulation results show that the proposed protocol has better performance than the three other routing protocols.

Enhanced Dynamic Management of Mobile Agent in Location Based Routing

  • Narahara, Yuichiro;Shiokawa, Shigeki
    • Journal of Multimedia Information System
    • /
    • v.3 no.4
    • /
    • pp.129-134
    • /
    • 2016
  • A routing protocol in mobile ad hoc networks is important, and a location based routing has attracted attention. We have proposed a method, in which plural mobile agents (MA) manage location information and construct a route and the number of MA dynamically changes depending on the network situation. However, the area where each MA manages is not always appropriate. This would increase the network load due to unnecessary split and mergence of MAs. To solve this problem, in this paper, we propose an enhanced method. In this method, the MA management area is properly determined based on distribution of nodes. From the performance evaluation, we show that the proposed method outperforms conventional methods in terms of packet delivery rate when network load is high.

QLGR: A Q-learning-based Geographic FANET Routing Algorithm Based on Multi-agent Reinforcement Learning

  • Qiu, Xiulin;Xie, Yongsheng;Wang, Yinyin;Ye, Lei;Yang, Yuwang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.4244-4274
    • /
    • 2021
  • The utilization of UAVs in various fields has led to the development of flying ad hoc network (FANET) technology. In a network environment with highly dynamic topology and frequent link changes, the traditional routing technology of FANET cannot satisfy the new communication demands. Traditional routing algorithm, based on geographic location, can "fall" into a routing hole. In view of this problem, we propose a geolocation routing protocol based on multi-agent reinforcement learning, which decreases the packet loss rate and routing cost of the routing protocol. The protocol views each node as an intelligent agent and evaluates the value of its neighbor nodes through the local information. In the value function, nodes consider information such as link quality, residual energy and queue length, which reduces the possibility of a routing hole. The protocol uses global rewards to enable individual nodes to collaborate in transmitting data. The performance of the protocol is experimentally analyzed for UAVs under extreme conditions such as topology changes and energy constraints. Simulation results show that our proposed QLGR-S protocol has advantages in performance parameters such as throughput, end-to-end delay, and energy consumption compared with the traditional GPSR protocol. QLGR-S provides more reliable connectivity for UAV networking technology, safeguards the communication requirements between UAVs, and further promotes the development of UAV technology.

Energy Aware Landmark Election and Routing Protocol for Grid-based Wireless Sensor Network (그리드 기반 무선센서네트워크에서 에너지 인지형 Landmark 선정 및 라우팅 프로토콜)

  • Sanwar Hosen, A.S.M.;Cho, Gi-Hwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.177-180
    • /
    • 2011
  • In practice, it is well known that geographical and/or location based routing is highly effective for wireless sensor network. Here, electing some landmarks on the network and forwarding data based on the landmark is one of the good approaches for a vast sensing field with holes. In the most previous works, landmarks are elected without considering the residual energy on each sensor. In this paper, we propose an Energy aware Landmark Election and Routing (ELER) protocol to establish a stable routing paths and reduce the total power consumption. The proposed protocol makes use of each sensor's energy level on electing the landmarks, which would be utilized to route a packet towards the target region using greedy forwarding method. Our simulation results illustrate that the proposed scheme can significantly reduce the power dissipation and effectively lengthen the lifetime of the network.

IEEE 802.15.4 MAC-based Location-ID Exchange Protocol for Realizing Micro-Cell Connectionless Location- Awareness Services

  • Kim, Baek-Gyu;Kang, Soon-Ju
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.4
    • /
    • pp.412-427
    • /
    • 2008
  • We propose ID-exchange protocol for Connectionless Location-Awareness Service (CLAS) to locate mobile nodes in indoor sensor network. When adapting location-awareness service to sensor network, the target system must be designed in accordance with various metrics which reflect the system requirement. We especially consider sustainability of the existing service which has been provided for its original purpose, such as environmental monitoring. The detailed meaning of sustainability here is that, even if location-awareness service is newly added to the existing service, the system must be assured to retain a stable network condition, and to deal with newly caused traffic properly. The CLAS ID-exchange protocol is especially designed for fixture and mobile nodes communication to achieve these properties. The protocol operates on 802.15.4 MAC layer to make mobile node work independently of the procedure to build routing table of fixture node, so a stable routing condition can be achieved even if there are many mobile nodes. Moreover, the dedicated frequency channel is assigned only for this protocol, so that traffic caused by location-awareness service can be distributed to another channel. A real system adapting the protocol was implemented to monitor fire and authorities' positions. We verified the overhead and elapsed time for location-awareness. The result shows the proposed protocol has a high performance in detecting speed, traffic distribution, and stability of overall network.

Location based Ad-hoc Network Routing Protocol for Ubiquitous Port (지능형 항만을 위한 위치기반 Ad-hoc 네트워크 라우팅 프로토콜)

  • Lee, Bong-Hee;Choi, Young-Bok
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.1
    • /
    • pp.65-71
    • /
    • 2011
  • In this paper, the RFID / USN-based ad-hoc network structure is presented for efficient operation of a container terminal yard. Communication between fixed or mobile devices in the container terminal yard is accomplished through the ad-hoc node, to collect the status information of a container in real time. Any outside shipper of the container as well as central server allows to share the status information of a container through ad-hoc communication. In addition, to predict the maximum wireless transmission range of nodes by RFID tag position in the yard, LAODV (Location based AODV) routing protocol is proposed. The validity is proved by performance evaluation via computer simulation.

PRESSURE BASED ROUTING PROTOCOL FOR UNDERWATER WIRELESS SENSOR NETWORKS: A SURVEY

  • Khasawneh, Ahmad;Bin Abd Latiff, Muhammad Shafie;Chizari, Hassan;Tariq, MoeenUddin;Bamatraf, Abdullah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.504-527
    • /
    • 2015
  • Underwater wireless sensor networks (UWSNs) are similar to the terrestrial sensor networks. Nevertheless, there are different characteristics among them such as low battery power, limited bandwidth and high variable propagation delay. One of the common major problems in UWSNs is determining an efficient and reliable routing between the source node and the destination node. Therefore, researchers tend to design efficient protocols with consideration of the different characteristics of underwater communication. Furthermore, many routing protocols have been proposed and these protocols may be classified as location-based and location-free routing protocols. Pressure-based routing protocols are a subcategory of the location-free routing protocols. This paper focuses on reviewing the pressure-based routing protocols that may further be classified into non-void avoidance protocols and void avoidance protocols. Moreover, non-void avoidance protocols have been classified into single factor based and multi factor based routing protocols. Finally, this paper provides a comparison between these protocols based on their features, performance and simulation parameters and the paper concludes with some future works on which further study can be conducted.

An Energy- Efficient Optimal multi-dimensional location, Key and Trust Management Based Secure Routing Protocol for Wireless Sensor Network

  • Mercy, S.Sudha;Mathana, J.M.;Jasmine, J.S.Leena
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3834-3857
    • /
    • 2021
  • The design of cluster-based routing protocols is necessary for Wireless Sensor Networks (WSN). But, due to the lack of features, the traditional methods face issues, especially on unbalanced energy consumption of routing protocol. This work focuses on enhancing the security and energy efficiency of the system by proposing Energy Efficient Based Secure Routing Protocol (EESRP) which integrates trust management, optimization algorithm and key management. Initially, the locations of the deployed nodes are calculated along with their trust values. Here, packet transfer is maintained securely by compiling a Digital Signature Algorithm (DSA) and Elliptic Curve Cryptography (ECC) approach. Finally, trust, key, location and energy parameters are incorporated in Particle Swarm Optimization (PSO) and meta-heuristic based Harmony Search (HS) method to find the secure shortest path. Our results show that the energy consumption of the proposed approach is 1.06mJ during the transmission mode, and 8.69 mJ during the receive mode which is lower than the existing approaches. The average throughput and the average PDR for the attacks are also high with 72 and 62.5 respectively. The significance of the research is its ability to improve the performance metrics of existing work by combining the advantages of different approaches. After simulating the model, the results have been validated with conventional methods with respect to the number of live nodes, energy efficiency, network lifetime, packet loss rate, scalability, and energy consumption of routing protocol.

Optimization Routing Protocol based on the Location, and Distance information of Sensor Nodes (센서 노드의 위치와 거리 정보를 기반으로 전송 경로를 최적화하는 라우팅 프로토콜)

  • Kim, Yong-Tae;Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.13 no.2
    • /
    • pp.127-133
    • /
    • 2015
  • In order for location information to deliver the collected information, it needs Sensor Nodes in an environment of Sensor Network. Each sensor sends data to a base station through the process of routing in a wireless sensor network environment. Therefore, Offering accurate location information is very important in a wireless sensor network environment. Most of existed routing methods save all the informations of nodes at the area of 1-hop. In order to save these informations, unnecessary wasted energy and traffics are generated. Routing Protocol proposed in this paper doesn't save node's location information, and doesn't exchange any periodic location information to reduce wasted energy. It includes transmission range of source nodes and nodes with the location information, however it doesn't include any nodes' routing near 1-hope distance.