• Title/Summary/Keyword: location error

Search Result 1,232, Processing Time 0.027 seconds

Enhanced Fault Location Algorithm for Short Faults of Transmission Line (1회선 송전선로 단락사고의 개선된 고장점 표정기법)

  • Lee, Kyung-Min;Park, Chul-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.955-961
    • /
    • 2016
  • Fault location estimation is an important element for rapid recovery of power system when fault occur in transmission line. In order to calculate line impedance, most of fault location algorithm uses by measuring relaying waveform using DFT. So if there is a calculation error due to the influence of phasor by DC offset component, due to large vibration by line impedance computation, abnormal and non-operation of fault locator can be issue. It is very important to implement the robust fault location algorithm that is not affected by DC offset component. This paper describes an enhanced fault location algorithm based on the DC offset elimination filter to minimize the effects of DC offset on a long transmission line. The proposed DC offset elimination filter has not need any erstwhile information. The phase angle delay of the proposed DC offset filter did not occurred and the gain error was not found. The enhanced fault location algorithm uses DFT filter as well as the proposed DC offset filter. The behavior of the proposed fault location algorithm using off-line simulation has been verified by data about several fault conditions generated by the ATP simulation program.

Selection of Optimal Sensor Locations for Thermal Error Model of Machine tools (공작기계 열오차 모델의 최적 센서위치 선정)

  • 안중용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.345-350
    • /
    • 1999
  • The effectiveness of software error compensation for thermally induced machine tool errors relies on the prediction accuracy of the pre-established thermal error models. The selection of optimal sensor locations is the most important in establishing these empirical models. In this paper, a methodology for the selection of optimal sensor locations is proposed to establish a robust linear model which is not subjected to collinearity. Correlation coefficient and time delay are used as thermal parameters for optimal sensor location. Firstly, thermal deformation and temperatures are measured with machine tools being excited by sinusoidal heat input. And then, after correlation coefficient and time delays are calculated from the measured data, the optimal sensor location is selected through hard c-means clustering and sequential selection method. The validity of the proposed methodology is verified through the estimation of thermal expansion along Z-axis by spindle rotation.

  • PDF

Impact force localization for civil infrastructure using augmented Kalman Filter optimization

  • Saleem, Muhammad M.;Jo, Hongki
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.123-139
    • /
    • 2019
  • Impact forces induced by external object collisions can cause serious damages to civil engineering structures. While accurate and prompt identification of such impact forces is a critical task in structural health monitoring, it is not readily feasible for civil structures because the force measurement is extremely challenging and the force location is unpredictable for full-scale field structures. This study proposes a novel approach for identification of impact force including its location and time history using a small number of multi-metric observations. The method combines an augmented Kalman filter (AKF) and Genetic algorithm for accurate identification of impact force. The location of impact force is statistically determined in the way to minimize the AKF response estimate error at measured locations and then time history of the impact force is accurately constructed by optimizing the error co-variances of AKF using Genetic algorithm. The efficacy of proposed approach is numerically demonstrated using a truss and a plate model considering the presence of modelling error and measurement noises.

Location Error Reduction method using Iterative Calculation in UWB system (Iterative Calculation을 이용한 UWB 위치측정에서의 오차감소 기법)

  • Jang, Sung-Jeen;Hwang, Jae-Ho;Choi, Nack-Hyun;Kim, Jae-Moung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.105-113
    • /
    • 2008
  • In Ubiquitous Society, accurate Location Calculation of user's device is required to achieve the need of users. As the location calculation is processed by ranging between transceivers, if some obstacles exist between transceivers, NLoS(Non-line-of-Sight) components of received signal increase along with the reduction of LoS(Line-of-Sight) components. Therefore the location calculation error will increase due to the NLoS effect. The conventional location calculation algorithm has the original ranging error because there is no transformation of ranging information which degrades the ranging accuracy. The Iterative Calculation method which minimizes the location calculation error relys on accurately identifying NLoS or LoS condition of the tested channel. We employ Kurtosis, Mean Excess Delay and RMS Delay spread of the received signal to identify whether the tested channel is LoS or NLoS firstly. Thereafter, to minimize location calculation error, the proposed Iterative Calculation method iteratively select random range and finds the averaged target location which has high probability. The simulation results confirm the enhancement of the proposed method.

Error Analysis of Time-Based and Angle-Based Location Methods (시간기반과 각도기반의 측위방식 성능비교 및 오차 특성 분석)

  • Kim Dong-Hyeok;Song Seung-Hun;Sung Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.962-967
    • /
    • 2006
  • Indoor positioning is highlighted recently, and various kinds of indoor positioning systems are under developments. Since positioning systems have their own characteristics, proper positioning scheme should be chosen according to the required specifications. Positioning methods are classified into time-based and angle-based one. This paper presents the error analysis of time-based and angle-based location methods. Because measurements of these methods are nonlinear, linearizations are needed in both cases to estimate the user position. In the linearization, Gauss-Newton method is used in both cases. To analyze the position error, we investigate the error ellipse parameters that include eccentricity, rotation angle, and the size of ellipse. Simulation results show that the major axes of TOA and AOA method lie in different quadrants at most region of workspace, especially where the geometry is poor. When the TOA/AOA hybrid is employed, it is found that the error ellipse is reduced to the intersection of ellipses of TOA and AOA.

Odometry error correction by Gyro sensor for mobile robot localization (이동로봇의 Localization을 위한 Gryo sensor에 의한 Odometry Error 보정에 관한 연구)

  • Park, Shi-Na;Ro, Young-Shick;Choi, Won-Tai;Hong, Hyun-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.597-599
    • /
    • 2005
  • To make the autonomous mobile robot move in the unknown space, we have to know the information of current location of the robot. So far, the location information that was obtained using Encoder always includes Dead Reckoning Error, which is accumulated continuously and gets bigger as the distance of movement increases. In this paper, we analyse the effect of the size of the two wheels of the mobile robot and the wheel track of them among the factors of Dead Reckoning Error. And after this, we compensate this Dead Reckoning Error by Kalman filter using Gyro Sensors. To accomplish this, we develop the controller to analyse the error components of Gyro Sensor and to minimize the error values. We employ the numerical approach to analyse the error components by linearizing them because each error component is nonlinear. And we compare the improved result through simulation.

  • PDF

A Study on Algorithm Robust to Error for Estimating partial Discharge Location using Acoustic Emission Sensors (AE(Acoustic Emission) 센서를 이용한 오차에 강인한 부분방전 위치추정 알고리즘에 관한 연구)

  • Cho, Sung-Min;Shin, Hee-Sang;Kim, Jae-Chul;Lee, Yang-Jin;Kim, Kwang-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.10
    • /
    • pp.69-75
    • /
    • 2008
  • This paper presents an algorithm robust to error for estimating partial discharge (PD) location using acoustic emission sensors. In operating transformers, the velocity computing of the acoustic signal is difficult because the temperature of the Insulation oil is not homogeneous. So, some error occurs in the process. Therefore, the algorithm estimating PD location must consider this error to provide maintenance person with useful information. The conventional algorithm shows the PD position as a point, while the new algorithm using LookUp-Table(LUT) shows PD position as error-map visually. The error-map is more useful than the conventional result because of robustness to error. Also, we compared performance of them, by adding error to data on purpose.

Fundamental Experiment for the Development of Water Pipeline Locator (상수도관로 위치탐사 장비개발을 위한 기초실험)

  • Park, Sang-Bong;Kim, Jin-Won;Oh, Kyeong-Seok;Kim, Min-Cheol;Koo, Ja-yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.253-261
    • /
    • 2016
  • A variety of methods for detecting the location of an underground water pipeline are being used across the world; the current main methods used in South Korea, however, have the problems of low precision and efficiency and the limitations in actual application. On this, this study developed locator capable of detecting the location of a water pipe by the use of an IMU sensor, and technology for using the extended karman filter to correct error in location detection and to plot the location on the coordinate system. This study carried out a tract test and a road test as basic experiments to measure the performance of the developed technology and equipment. As a result of the straight line, circular and ellipse track tests, the 1750 IMU sensor showed the average error of 0.08-0.11%; and thus it was found that the developed locator can detect a location precisely. As a result of the 859.6-m road test, it was found that the error was 0.31 m in case the moving rate of the sensor was 0.3-0.6 m/s; and thus it was judged that the equipment developed by this study can be applied to long-distance water pipes of over 1 km sufficiently. It is planned to evaluate its field applicability in the future through an actual pipe network pilot test, and it is expected that locator capable of detecting the location of a water pipe more precisely will be developed through research for the enhancement of accuracy in the algorithm of location detection.

Network Traffic Control for War-game Simulation in Distributed Computing Environment (분산 컴퓨팅 환경에서의 워게임 시뮬레이션을 위한 네트워크 트래픽 제어)

  • Jang, Sung-Ho;Kim, Tae-Young;Lee, Jong-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.1-8
    • /
    • 2009
  • The distributed war-game simulation system has been used to represent the virtual battlefield environment. In order to produce a simulation result, simulators connected from a network transfer messages with location information of simulated objects to a central simulation server. This network traffic is an immediate cause of system performance degradation. Therefore, the paper proposes a system to manage and control network traffic generated from distributed war-game simulation. The proposed system determines the moving distance of simulated objects and filters location messages by a distance threshold which is controlled according to system conditions like network traffic and location error. And, the system predicts the next location of simulated objects to minimize location error caused by message filtering. Experimental results demonstrate that the proposed system is effective to control the network traffic of distributed war-game simulation systems and reduce the location error of simulated objects.

Location Estimation Algorithm with TDOA Scheme in Real Time Location System (RTLS에서 TDOA 기법을 이용한 위치추정 알고리즘)

  • Jeong, Seung-Hee;Kang, Chul-Gyu;Oh, Chang-Heon;Lim, Choon-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.459-462
    • /
    • 2005
  • In this paper, we investigate the high precision location estimation algorithm in 2.45GHz band RTLS with multiple tags. The location is estimated in LOS environments, 300m ${\times}$ 300m area, and 2D coordinates adopting a TDOA scheme which is not necessitate the transmission time of tags. We evaluate the average estimation error in distance assuming that tags are randomly distributed and the readers(3${\sim}$8) are uniformly(equal space) placed in test area. In results, average estimation error is 3.12m and 1.47m at reader numbers of 4 and 8, respectively. Minimum estimation error is obtained when the accumulated receiving signal from a tag is 3 or 4 regardless of available reader numbers. The error is less than 3m, satisfies the specification of RTLS.

  • PDF