• Title/Summary/Keyword: location error

Search Result 1,235, Processing Time 0.022 seconds

New Decoding Techniques of RS Codes for Optical Disks (광학식 디스크에 적합한 RS 부호의 새로운 복호 기법)

  • 엄흥열;김재문;이만영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.3
    • /
    • pp.16-33
    • /
    • 1993
  • New decoding algorithm of double-error-correction Reed-Solmon codes over GF(2$^{8}$) for optical compact disks is proposed and decoding algorithm of RS codes with triple-error-correcting capability is presented in this paper. First of all. efficient algorithms for estimating the number of errors in the received code words are presented. The most complex circuits in the RS decoder are parts for soving the error-location numbers from error-location polynomial, so the complexity of those circuits has a great influence on overall decoder complexity. One of the most known algorithm for searching the error-location number is Chien's method, in which all the elements of GF(2$^{m}$) are substituted into the error-location polynomial and the error-location number can be found as the elements satisfying the error-location polynomial. But Chien's scheme needs another 1 frame delay in the decoder, which reduces decoding speed as well as require more stroage circuits for the received ocode symbols. The ther is Polkinghorn method, in which the roots can be resolved directly by solving the error-location polynomial. Bur this method needs additional ROM (readonly memory) for storing tthe roots of the all possible coefficients of error-location polynomial or much more complex cicuit. Simple, efficient, and high speed method for solving the error-location number and decoding algorithm of double-error correction RS codes which reudce considerably the complexity of decoder are proposed by using Hilbert theorems in this paper. And the performance of the proposed decoding algorithm is compared with that of conventional decoding algorithms. As a result of comparison, the proposed decoding algorithm is superior to the conventional decoding algorithm with respect to decoding delay and decoder complexity. And decoding algorithm of RS codes with triple-error-correcting capability is presented, which is suitable for error-correction in digital audio tape, also.

  • PDF

Effect of orientation, interval size, target location on interpolation estimates on CRT display. (CRT 표시장치에서 내삽 추정치에 대한 방향, 크기, 위치의 효과)

  • 노재호
    • Journal of the Ergonomics Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.35-42
    • /
    • 1990
  • This study is concerned with the accuracy, of error with which subjects can interpolate the location of a target between two graduation markers with 4 orientations and 6 sizes CRT display. Stimuli were graphic images on CRT with a linear, end-markec, ungraduated scales having a target. The location of a target is estimated in units over te range 1-99. Smallest error of estimates was at the near ends and middle of the base-line. The median error was less than 2 units, modal error was 1, and the most error (; 99.7%) was within 10. A proper size to make an minimum error in interpolation exists such that size 400 pixels. Interpolation estimation is shown to be affected by the size, location and interaction (orientation x location, size x location). The accuracy, interpolation performance are discussed in relation to absolute error associated with visual performance.

  • PDF

Location Error Analysis of an Active RFID-Based RTLS in Multipath and AWGN Environments

  • Myong, Seung-Il;Mo, Sang-Hyun;Yang, Hoe-Sung;Cha, Jong-Sub;Lee, Heyung-Sub;Seo, Dong-Sun
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.528-536
    • /
    • 2011
  • In this paper, we analyze the location accuracy of real-time locating systems (RTLSs) in multipath environments in which the RTLSs comply with the ISO/IEC 24730-2 international standard. To analyze the location error of RTLS in multipath environments, we consider a direct path and indirect path, in which time and phase are delayed, and also white Gaussian noise is added. The location error depends strongly on both the noise level and phase difference under a low signal-to-noise ratio (SNR) regime, but only on the noise level under a high SNR regime. The phase difference effect can be minimized by matching it to the time delay difference at a ratio of 180 degrees per 1 chip time delay (Tc). At a relatively high SNR of 10 dB, a location error of less than 3 m is expected at any phase and time delay value of an indirect signal. At a low SNR regime, the location error range increases to 8.1 m at a 0.5 Tc, and to 7.3 m at a 1.5 Tc. However, if the correlation energy is accumulated for an 8-bit period, the location error can be reduced to 3.9 m and 2.5 m, respectively.

Robust Location Error Detection Protocol for Geographic Routing in indoor Wireless Sensor Networks (실내 무선 센서 네트워크에서 위치 기반 라우팅을 위한 위치 에러 감지 프로토콜)

  • Kong, Young-Bae;Park, Gwi-Tae
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.51-53
    • /
    • 2009
  • In wireless sensor networks(WSNs), geographic routing algorithms can enhance the network capacity. However, in the real WSNs, it is difficult for each node to know its accurate physical location. Geographic routing with location error may have serious problems such as disconnected links and delayed data transmission. In this letter, we present an efficient location error detection scheme for geographic routing. The proposed algorithm can efficiently update its incorrect location without additional procedure and finally enhance the performance on the geographic routing with the location errors.

  • PDF

GPS/INS Fusion Using Multiple Compensation Method Based on Kalman Filter (칼만 필터를 이용한 GPS/INS융합의 다중 보정 방법)

  • Kwon, Youngmin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.190-196
    • /
    • 2015
  • In this paper, we propose multiple location error compensation algorithm for GPS/INS fusion using kalman filter and introduce the way to reduce location error in 9-axis navigation devices for implementing inertial navigation technique. When evaluating location, there is an increase of location error. So navigation systems need robust algorithms to compensate location error in GPS/INS fusion. In order to improve robustness of 9-axis inertial sensor(mpu-9150) over its disturbance, we used tilt compensation method using compensation algorithm of acceleration sensor and Yaw angle compensation to have exact azimuth information of the object. And it shows improved location result using these methods combined with kalman filter.

Step Trajectory/Indoor Map Feature-based Smartphone Indoor Positioning System without Using Wi-Fi Signals (Wi-Fi 신호를 사용하지 않고 보행자 궤적과 건물내 지도 특성만을 이용한 스마트폰 실내 위치 측정 시스템)

  • Na, Dong-Jun;Choi, Kwon-Hue
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.6
    • /
    • pp.323-334
    • /
    • 2014
  • In this paper, we proposed indoor positioning system with improved accuracy. The proposed indoor location measurement system is based pedestrian location measurement method that use the embedded sensor of smartphone. So, we do not need wireless external resources, such as GPS or WiFi signals. The conventional methods measure indoor location by generating a movement route of pedestrian by step and direction recognition. In this paper, to correct the direction sensor error, we use the common feature of the normal indoor floor map that the indoor path is lattice-structured. And we quantize moving directions depending on the direction of indoor path. In addition, we propose moving direction measuring method using geomagnetic sensor and gyro sensor to improve the accuracy. Also, the proposed step detection method uses angle and accelerometer sensors. The proposed step detection method is not affected by the posture of the smartphone. Direction errors caused by direction sensor error is corrected due to proposed moving direction measuring method. The proposed location error correction method corrects location error caused by step detection error without the need for external wireless signal resources.

A Study on Error Reduction of Indoor Location Determination using triangulation Method and Least Square Method (삼각측량법과 최소자승법을 활용한 실내 위치 결정의 산포 감소 방안에 관한 연구)

  • Jang, Jung-Hwan;Lee, Doo-Yong;Zhang, Jing-Lun;Jho, Yong-Chul;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.1
    • /
    • pp.217-224
    • /
    • 2012
  • Location-Based Services(LBS) is a service that provide location information by using communication network or satellite signal. In order to provide LBS precisely and efficiently, we studied how we can reduce the error on location determination of objects such people and things. We focus on using the least square method and triangulation positioning method to improves the accuracy of the existing location determination method. Above two methods is useful if the distance between the AP and the tags can be find. Though there are a variety of ways to find the distance between the AP and tags, least squares and triangulation positioning method are wildely used. In this thesis, positioning method is composed of preprocessing and calculation of location coordinate and detail of methodology in each stage is explained. The distance between tag and AP is adjusted in the preprocessing stage then we utilize least square method and triangulation positioning method to calculate tag coordinate. In order to confirm the performance of suggested method, we developed the test program for location determination with Labview2010. According to test result, triangulation positioning method showed up loss error than least square method by 38% and also error reduction was obtained through adjustment process and filtering process. It is necessary to study how to reduce error by using additional filtering method and sensor addition in the future and also how to improve the accuracy of location determination at the boundary location between indoor and outdoor and mobile tag.

A Location Technique Based On Calibrated Radio Frequency Propagation Model For Wireless Local Area Networks (교정된 전파전파 모델에 기반한 WLAN 측위 기법)

  • Kim, Hee-Sung;Shim, Ju-Young;Choi, Wan-Sik;Lee, Hyung-Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.760-766
    • /
    • 2008
  • This paper proposes an efficient location technique to find an indoor location under the IEEE 802.11 wireless local area networks. The proposed method is based on the range measurements obtained from a simple radio frequency propagation model. Thus, unlike the radio frequency fingerprint correlation method, it does not suffer from the computational burden during the real-time location service period and can quickly reply the location requests of many users at the same time. To increase the location accuracy in spite of the frequent non-line-of-sight error occurrences, the proposed method calibrates the distortion of the non-line-of-sight error by a simple measurement surveying procedure that does not require the surveyor's manual interaction. Experimental results show the capability of the proposed method.

Error Revision of the Unknown Tag Location in Smart Space (스마트 스페이스에서 미지의 태그 위치 오차 보정)

  • Tak, Myung-Hwan;Jee, Suk-Kun;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.158-163
    • /
    • 2010
  • In this paper, we propose the location measurement algorithm of unknown tag based on RFID (Radio-Frequency IDentification) by using RSSI (Received Signal Strength Indication) and TDOA (Time Difference of Arrival) and extended Kalman filter in smart space. To do this, first, we recognize the location of unknown tag by using the RSSI and TDOA recognition methods. Second, we set the coordinate of the tag location measured by using trilateration and SX algorithm. But the tag location data measured by this method are included complex environmental error. So, we use the extended Kalman filter in order to revise error data of the tag location. Finally, we validate the applicability of the proposed method though the simulation in a complex environment.

Improved Decoding Algorithm on Reed-Solomon Codes using Division Method (제산방법에 의한 Reed-Solomon 부호의 개선된 복호알고리듬)

  • 정제홍;박진수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.11
    • /
    • pp.21-28
    • /
    • 1993
  • Decoding algorithm of noncyclic Reed-Solomon codes consists of four steps which are to compute syndromes, to find error-location polynomial, to decide error-location, and to solve error-values. There is a decoding method by which the computation of both error-location polynomial and error-evaluator polynimial can be avoided in conventional decoding methods using Euclid algorithm. The disadvantage of this method is that the same amount of computation is needed that is equivalent to solve the avoided polynomial. This paper considers the division method on polynomial on GF(2$^{m}$) systematically. And proposes a novel method to find error correcting polynomial by simple mathematical expression without the same amount of computation to find the two avoided polynomial. Especially. proposes the method which the amount of computation to find F (x) from the division M(x) by x, (x-1),....(x--${\alpha}^{n-2}$) respectively can be avoided. By applying the simple expression to decoding procedure on RS codes, propses a new decoding algorithm, and to show the validity of presented method, computer simulation is performed.

  • PDF