• 제목/요약/키워드: localized damage detection

검색결과 22건 처리시간 0.025초

Statistics based localized damage detection using vibration response

  • Dorvash, Siavash;Pakzad, Shamim N.;LaCrosse, Elizabeth L.
    • Smart Structures and Systems
    • /
    • 제14권2호
    • /
    • pp.85-104
    • /
    • 2014
  • Damage detection is a challenging, complex, and at the same time very important research topic in civil engineering. Identifying the location and severity of damage in a structure, as well as the global effects of local damage on the performance of the structure are fundamental elements of damage detection algorithms. Local damage detection is essential for structural health monitoring since local damages can propagate and become detrimental to the functionality of the entire structure. Existing studies present several methods which utilize sensor data, and track global changes in the structure. The challenging issue for these methods is to be sensitive enough in identifYing local damage. Autoregressive models with exogenous terms (ARX) are a popular class of modeling approaches which are the basis for a large group of local damage detection algorithms. This study presents an algorithm, called Influence-based Damage Detection Algorithm (IDDA), which is developed for identification of local damage based on regression of the vibration responses. The formulation of the algorithm and the post-processing statistical framework is presented and its performance is validated through implementation on an experimental beam-column connection which is instrumented by dense-clustered wired and wireless sensor networks. While implementing the algorithm, two different sensor networks with different sensing qualities are utilized and the results are compared. Based on the comparison of the results, the effect of sensor noise on the performance of the proposed algorithm is observed and discussed in this paper.

Study on damage detection software of beam-like structures

  • Xiang, Jiawei;Jiang, Zhansi;Wang, Yanxue;Chen, Xuefeng
    • Structural Engineering and Mechanics
    • /
    • 제39권1호
    • /
    • pp.77-91
    • /
    • 2011
  • A simply structural damage detection software is developed to identification damage in beams. According to linear fracture mechanics theory, the localized additional flexibility in damage vicinity can be represented by a lumped parameter element. The damaged beam is modeled by wavelet-based elements to gain the first three frequencies precisely. The first three frequencies influencing functions of damage location and depth are approximated by means of surface-fitting techniques to gain damage detection database of forward problem. Then the first three measured natural frequencies are employed as inputs to solve inverse problem and the intersection of the three frequencies contour lines predict the damage location and depth. The DLL (Dynamic Linkable Library) file of damage detection method is coded by C++ and the corresponding interface of software is coded by virtual instrument software LabVIEW. Finally, the software is tested on beams and shafts in engineering. It is shown that the presented software can be used in actual engineering structures.

Damage Detection in High-Rise Buildings Using Damage-Induced Rotations

  • Sung, Seung Hun;Jung, Ho Youn;Lee, Jung Hoon;Jung, Hyung Jo
    • 비파괴검사학회지
    • /
    • 제34권6호
    • /
    • pp.447-456
    • /
    • 2014
  • In this paper, a new damage-detection method based on structural vibration is proposed. The essence of the proposed method is the detection of abrupt changes in rotation. Damage-induced rotation (DIR), which is determined from the modal flexibility of the structure, initially occurs only at a specific damaged location. Therefore, damage can be localized by evaluating abrupt changes in rotation. We conducted numerical simulations of two damage scenarios using a 10-story cantilever-type building model. Measurement noise was also considered in the simulation. We compared the sensitivity of the proposed method to localize damage to that of two conventional modal-flexibility-based damage-detection methods, i.e., uniform load surface (ULS) and ULS curvature. The proposed method was able to localize damage in both damage scenarios for cantilever structures, but the conventional methods could not.

Vibration-based method for story-level damage detection of the reinforced concrete structure

  • Mehboob, Saqib;Zaman, Qaiser U.
    • Computers and Concrete
    • /
    • 제27권1호
    • /
    • pp.29-39
    • /
    • 2021
  • This study aimed to develop a method for the determination of the damaged story in reinforced concrete (RC) structure with ambient vibrations, based on modified jerk energy methodology. The damage was taken as a localized reduction in the stiffness of the structural member. For loading, random white noise excitation was used, and dynamic responses from the finite element model (FEM) of 4 story RC shear frame were extracted at nodal points. The data thus obtained from the structure was used in the damage detection and localization algorithm. In the structure, two damage configurations have been introduced. In the first configuration, damage to the structure was artificially caused by a local reduction in the modulus of elasticity. In the second configuration, the damage was caused, using the Elcentro1940 and Kashmir2005 earthquakes in real-time history. The damage was successfully detected if the frequency drop was greater than 5% and the mode shape correlation remained less than 0.8. The results of the damage were also compared to the performance criteria developed in the Seismostruct software. It is demonstrated that the proposed algorithm has effectively detected the existence of the damage and can locate the damaged story for multiple damage scenarios in the RC structure.

Adaptive-scale damage detection strategy for plate structures based on wavelet finite element model

  • He, Wen-Yu;Zhu, Songye
    • Structural Engineering and Mechanics
    • /
    • 제54권2호
    • /
    • pp.239-256
    • /
    • 2015
  • An adaptive-scale damage detection strategy based on a wavelet finite element model (WFEM) for thin plate structures is established in this study. Equations of motion and corresponding lifting schemes for thin plate structures are derived with the tensor products of cubic Hermite multi-wavelets as the elemental interpolation functions. Sub-element damages are localized by using of the change ratio of modal strain energy. Subsequently, such damages are adaptively quantified by a damage quantification equation deduced from differential equations of plate structure motion. WFEM scales vary spatially and change dynamically according to actual needs. Numerical examples clearly demonstrate that the proposed strategy can progressively locate and quantify plate damages. The strategy can operate efficiently in terms of the degrees-of-freedom in WFEM and sensors in the vibration test.

배열 압전 능동 센서를 이용한 볼트 구멍의 층간분리 탐지 (Delamination Detection at a Bolt Hole Using a Built-in Piezoelectric Active Sensor Array)

  • 박찬익;김민성
    • 한국항공우주학회지
    • /
    • 제36권6호
    • /
    • pp.550-557
    • /
    • 2008
  • 영구히 장착된 배열 압전 능동 센서를 사용하여 복합재 보강판의 볼트 구멍에 있는 층간분리 손상을 탐지하였다. 다양한 신호처리 기법을 사용하여 국부적인 수직하중에 의하여 발생한 볼트 구멍 주위의 눈에 보이지 않는 작은 층간분리를 탐지하였다. 배열 압전 센서를 사용하여 진단신호를 생성하였으며, 응답신호를 측정하였다. 응답신호를 신호 처리하여 손상에 민감한 특성들을 추출하였다. 이 특성들을 사용하여 손상 지수를 계산하였고, 손상 지수를 사용하여 손상의 유무와 위치를 추정하였다.

Using harmonic class loading for damage identification of plates by wavelet transformation approach

  • Beheshti-Aval, S.B.;Taherinasab, M.;Noori, M.
    • Smart Structures and Systems
    • /
    • 제8권3호
    • /
    • pp.253-274
    • /
    • 2011
  • In this paper, the harmonic displacement response of a damaged square plate with all-over part-through damage parallel to one edge is utilized as the input signal function in wavelet analysis. The method requires the properties of the damaged plate, i.e., no information about the original undamaged structure is required. The location of damage is identified by sudden changes in the spatial variation of transformed response. The incurred damage causes a change in the stiffness or mass of the plate. This causes a localized singularity which can be identified by a wavelet analysis of the displacement response. In this study via numerical examples shown by using harmonic response is more versatile and effective compared with the static deflection response, specially in the presence of noise. In the light of the obtained results, suggestions for future work are presented and discussed.

파워스펙트럼 및 신경망회로를 이용한 기어박스의 결함진단 및 결함형태 분류에 관한 연구 (Fault Detection and Damage Pattern Analysis of a Gearbox Using the Power Spectra Density and Artificial Neural Network)

  • 이상권
    • 대한기계학회논문집A
    • /
    • 제27권4호
    • /
    • pp.537-543
    • /
    • 2003
  • Transient vibration generated by developing localized fault in gear can be used as indicators in gear fault detection. This vibration signal suffers from the background noise such as gear meshing frequency and its harmonics and broadband noise. Thus in order to extract the information about the only gear fault from the raw vibration signal measured on the gearbox this signal is processed to reduce the background noise with many kinds of signal-processing tools. However, these signal-processing tools are often very complex and time waste. Thus. in this paper. we propose a novel approach detecting the damage of gearbox and analyzing its pattern using the raw vibration signal. In order to do this, the residual signal. which consists of the sideband components of the gear meshing frequent) and its harmonics frequencies, is extracted from the raw signal by the power spectral density (PSD) to obtain the information about the fault and is used as the input data of the artificial neural network (ANN) for analysis of the pattern of gear fault. This novel approach has been very successfully applied to the damage analysis of a laboratory gearbox.

웨이블렛 변환을 이용한 구조물의 결함 진단 (Structural Damage Detection Using Wavelet Transform)

  • 김창구;박광호;기창구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.194-200
    • /
    • 1999
  • Localized damage to a structure affects its dynamic properties, and much work has been undertaken investigating the variation of natural frequencies, damping ratios and mode shapes. This paper presents a technique based on wavelet transform to detect the existences and locations of structural damages. The procedure operates solely on the mode shape from the damaged structure, and does not require a priori knowledge of the undamaged structure. The procedure is developed using a 32-story shear building model. Applying wavelet transform to the mode shape successfully identifies the location of damage. The procedure is best suited to the mode shape obtained from the fundamental natural frequency. The wavelet coefficients from the higher mode shapes can be used to verify the location of damage, but they are not as sensitive as the wavelet coefficients of the lower mode shapes.

  • PDF

BIM model-based structural damage localization using visual-inertial odometry

  • Junyeon Chung;Kiyoung Kim;Hoon Sohn
    • Smart Structures and Systems
    • /
    • 제31권6호
    • /
    • pp.561-571
    • /
    • 2023
  • Ensuring the safety of a structure necessitates that repairs are carried out based on accurate inspections and records of damage information. Traditional methods of recording damage rely on individual paper-based documents, making it challenging for inspectors to accurately record damage locations and track chronological changes. Recent research has suggested the adoption of building information modeling (BIM) to record detailed damage information; however, localizing damages on a BIM model can be time-consuming. To overcome this limitation, this study proposes a method to automatically localize damages on a BIM model in real-time, utilizing consecutive images and measurements from an inertial measurement unit in close proximity to damages. The proposed method employs a visual-inertial odometry algorithm to estimate the camera pose, detect damages, and compute the damage location in the coordinate of a prebuilt BIM model. The feasibility and effectiveness of the proposed method were validated through an experiment conducted on a campus building. Results revealed that the proposed method successfully localized damages on the BIM model in real-time, with a root mean square error of 6.6 cm.