• Title/Summary/Keyword: localization method

Search Result 1,418, Processing Time 0.024 seconds

An Effective TOA-based Localization Method with Adaptive Bias Computation

  • Go, Seung-Ryeol
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In this paper, we propose an effective time-of-arrival (TOA)-based localization method with adaptive bias computation in indoor environments. The goal of the localization is to estimate an accurate target's location in wireless localization system. However, in indoor environments, non-line-of-sight (NLOS) errors block the signal propagation between target device and base station. The NLOS errors have significant effects on ranging between two devices for wireless localization. In TOA-based localization, finding the target's location inside the overlapped area in the TOA-circles is difficult. We present an effective localization method using compensated distance with adaptive bias computation. The proposed method is possible for the target's location to estimate an accurate location in the overlapped area using the measured distances with subtracted adaptive bias. Through localization experiments in indoor environments, estimation error is reduced comparing to the conventional localization methods.

Ceiling-Based Localization of Indoor Robots Using Ceiling-Looking 2D-LiDAR Rotation Module (천장지향 2D-LiDAR 회전 모듈을 이용한 실내 주행 로봇의 천장 기반 위치 추정)

  • An, Jae Won;Ko, Yun-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.7
    • /
    • pp.780-789
    • /
    • 2019
  • In this paper, we propose a new indoor localization method for indoor mobile robots using LiDAR. The indoor mobile robots operating in limited areas usually require high-precision localization to provide high level services. The performance of the widely used localization methods based on radio waves or computer vision are highly dependent on their usage environment. Therefore, the reproducibility of the localization is insufficient to provide high level services. To overcome this problem, we propose a new localization method based on the comparison between ceiling shape information obtained from LiDAR measurement and the blueprint. Specifically, the method includes a reliable segmentation method to classify point clouds into connected planes, an effective comparison method to estimate position by matching 3D point clouds and 2D blueprint information. Since the ceiling shape information is rarely changed, the proposed localization method is robust to its usage environment. Simulation results prove that the position error of the proposed localization method is less than 10 cm.

Spatially Mapped GCC Function Analysis for Multiple Source and Source Localization Method (공간좌표로 사상된 GCC 함수의 다 음원에 대한 해석과 음원 위치 추정 방법)

  • Kwon, Byoung-Ho;Park, Young-Jin;Park, Youn-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.415-419
    • /
    • 2010
  • A variety of methods for sound source localization have been developed and applied to several applications such as noise detection system, surveillance system, teleconference system, robot auditory system and so on. In the previous work, we proposed the sound source localization using the spatially mapped GCC functions based on TDOA for robot auditory system. Performance of the proposed one for the noise effect and estimation resolution was verified with the real environmental experiment under the single source assumption. However, since multi-talker case is general in human-robot interaction, multiple source localization approaches are necessary. In this paper, the proposed localization method under the single source assumption is modified to be suitable for multiple source localization. When there are two sources which are correlated, the spatially mapped GCC function for localization has three peaks at the real source locations and imaginary source location. However if two sources are uncorrelated, that has only two peaks at the real source positions. Using these characteristics, we modify the proposed localization method for the multiple source cases. Experiments with human speeches in the real environment are carried out to evaluate the performance of the proposed method for multiple source localization. In the experiments, mean value of estimation error is about $1.4^{\circ}$ and percentage of multiple source localization is about 62% on average.

Probabilistic localization of the service robot by mapmatching algorithm

  • Lee, Dong-Heui;Woojin Chung;Kim, Munsang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.92.3-92
    • /
    • 2002
  • A lot of localization algorithms have been developed in order to achieve autonomous navigation. However, most of localization algorithms are restricted to certain conditions. In this paper, Monte Carlo localization scheme with a map-matching algorithm is suggested as a robust localization method for the Public Service Robot to accomplish its tasks autonomously. Monte Carlo localization can be applied to local, global and kidnapping localization problems. A range image based measure function and a geometric pattern matching measure function are applied for map matching algorithm. This map matching method can be applied to both polygonal environments and un-polygonal environments and achieves...

  • PDF

Robust AUV Localization Incorporating Parallel Learning Module (병렬 학습 모듈을 통한 자율무인잠수정의 강인한 위치 추정)

  • Lee, Gwonsoo;Lee, Phil-Yeob;Kim, Ho Sung;Lee, Hansol;Kang, Hyungjoo;Lee, Jihong
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.4
    • /
    • pp.306-312
    • /
    • 2021
  • This paper describes localization of autonomous underwater vehicles(AUV), which can be used when some navigation sensor data are an outlier. In that situation, localization through existing navigation algorithms causes problems in long-range localization. Even if an outlier sensor data occurs once, problems of localization will continue. Also, if outlier sensor data is related to azimuth (direction of AUV), it causes bigger problems. Therefore, a parallel localization module, in which different algorithms are performed in a normal and abnormal situation should be designed. Before designing a parallel localization module, it is necessary to study an effective method in the abnormal situation. So, we propose a localization method through machine learning. For this method, a learning model consists of only Fully-Connected and trains through randomly contaminated real sea data. The ground truth of training is displacement between subsequent GPS data. As a result, average error in localization through the learning model is 0.4 times smaller than the average error in localization through the existing navigation algorithm. Through this result, we conclude that it is suitable for a component of the parallel localization module.

Indoor Localization of a Mobile Robot Using External Sensor (외부 센서를 이용한 이동 로봇 실내 위치 추정)

  • Ko, Nak-Yong;Kim, Tae-Gyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.420-427
    • /
    • 2010
  • This paper describes a localization method based on Monte Carlo Localization approach for a mobile robot. The method uses range data which are measured from ultrasound transmitting beacons whose locations are given a priori. The ultrasound receiver on-board a robot detects the range from the beacons. The method requires several beacons, theoretically over three. The method proposes a sensor model for the range sensing based on statistical analysis of the sensor output. The experiment uses commercialized beacons and detector which are used for trilateration localization. The performance of the proposed method is verified through real implementation. Especially, it is shown that the performance of the localization degrades as the sensor update rate decreases compared with the MCL algorithm update rate. Though the method requires exact location of the beacons, it doesn't require geometrical map information of the environment. Also, it is applicable to estimation of the location of both the beacons and robot simultaneously.

EKF based Mobile Robot Indoor Localization using Pattern Matching (패턴 매칭을 이용한 EKF 기반 이동 로봇 실내 위치 추정)

  • Kim, Seok-Young;Lee, Ji-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.1
    • /
    • pp.45-56
    • /
    • 2012
  • This paper proposes how to improve the performance of CSS-based indoor localization system. CSS based localization utilizes signal flight time between anchors and tag to estimate distance. From the distances, the 3-dimensional position is calculated through trilateration. However the error in distance caused from multi-path effect transfers to the position error especially in indoor environment. This paper handles a problem of reducing error in raw distance information. And, we propose the new localization method by pattern matching instead of the conventional localization method based on trilateration that is affected heavily on multi-path error. The pattern matching method estimates the position by using the fact that the measured data of near positions possesses a high similarity. In order to gain better performance of localization, we use EKF(Extended Kalman Filter) to fuse the result of CSS based localization and robot model.

Improved TOA-Based Localization Method with BS Selection Scheme for Wireless Sensor Networks

  • Go, Seungryeol;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.707-716
    • /
    • 2015
  • The purpose of a localization system is to estimate the coordinates of the geographic location of a mobile device. The accuracy of wireless localization is influenced by nonline-of-sight (NLOS) errors in wireless sensor networks. In this paper, we present an improved time of arrival (TOA)-based localization method for wireless sensor networks. TOA-based localization estimates the geographic location of a mobile device using the distances between a mobile station (MS) and three or more base stations (BSs). However, each of the NLOS errors along a distance measured from an MS (device) to a BS (device) is different because of dissimilar obstacles in the direct signal path between the two devices. To accurately estimate the geographic location of a mobile device in TOA-based localization, we propose an optimized localization method with a BS selection scheme that selects three measured distances that contain a relatively small number of NLOS errors, in this paper. Performance evaluations are presented, and the experimental results are validated through comparisons of various localization methods with the proposed method.

Enhancement of Source Localization Performance using Clustering Ranging Method (클러스터링 기법을 이용한 음원의 위치추정 성능향상)

  • Lee, Ho Jin;Yoon, Kyung Sik;Lee, Kyun Kyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • Source localization has developed in various fields of signal processing including radar, sonar, and wireless communication, etc. Source localization can be found by estimating the time difference of arrival between the each of sensors. Several methods like the NLS(Nonlinear Least Square) cost function have been proposed in order to improve the performance of time delay estimation. In this paper, we propose a clustering method using the four sensors with the same aperture as previous methods of using the three sensors. Clustering method can be improved the source localization performance by grouping similar estimated values. The performance of source localization using clustering method is evaluated by Monte Carlo simulation.

Error Estimation Method for Matrix Correlation-Based Wi-Fi Indoor Localization

  • Sun, Yong-Liang;Xu, Yu-Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2657-2675
    • /
    • 2013
  • A novel neighbor selection-based fingerprinting algorithm using matrix correlation (MC) for Wi-Fi localization is presented in this paper. Compared with classic fingerprinting algorithms that usually employ a single received signal strength (RSS) sample, the presented algorithm uses multiple on-line RSS samples in the form of a matrix and measures correlations between the on-line RSS matrix and RSS matrices in the radio-map. The algorithm makes efficient use of on-line RSS information and considers RSS variations of reference points (RPs) for localization, so it offers more accurate localization results than classic neighbor selection-based algorithms. Based on the MC algorithm, an error estimation method using artificial neural network is also presented to fuse available information that includes RSS samples and localization results computed by the MC algorithm and model the nonlinear relationship between the available information and localization errors. In the on-line phase, localization errors are estimated and then used to correct the localization results to reduce negative influences caused by a static radio-map and RP distribution. Experimental results demonstrate that the MC algorithm outperforms the other neighbor selection-based algorithms and the error estimation method can reduce the mean of localization errors by nearly half.