• Title/Summary/Keyword: local wind environment

Search Result 177, Processing Time 0.03 seconds

Methodology of Climate-Ecological Priority Area Analysis for Air Corridor Planning - In the Case of Pan-Gyo Area - (바람통로 계획을 위한 기후생태적 우선지역 분석 및 설정 방법 - 성남 판교지역을 중심으로 -)

  • 송영배
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.3
    • /
    • pp.58-73
    • /
    • 2003
  • It is well known that urban environment affects climate, as we can see in the quality of bio-climate. However, climate has not been recognised properly in the urban planning process. The role it flays needs to be examined for better urban environment. The main objective of this study is to investigate the climate-ecological priority area which produces cold fresh air and thermal induced wind circulation between rural and urban areas. The objective is also to improve the quality of bio-climate and wind circulation at blocked urban areas. This paper uses the measurement and analysis method of wind direction and wind speed in order to investigate the climate-ecological priority area and cold fresh air corridor. In this study, local climate conditions i.e. wind speed, wind direction, temperature, humidity etc., were measured at nine fields and analyzed. On the basis of the climate measurement, the climate ecological priority areas were delineated; These will be assigned as climate-ecological conservation areas.

Assessment of Observation Environment for Surface Wind in Urban Areas Using a CFD model (CFD 모델을 이용한 도시지역 지상바람 관측환경 평가)

  • Yang, Ho-Jin;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.449-459
    • /
    • 2015
  • Effects of buildings and topography on observation environment of surface wind in central regions of urban areas are investigated using a computational fluid dynamics (CFD) model. In order to reflect the characteristics of buildings and topography in urban areas, geographic information system (GIS) data are used to construct surface boundary input data. For each observation station, 16 cases with different inflow directions are considered to evaluate effects of buildings and topography on wind speed and direction around the observation station. The results show that flow patterns are very complicated due to the buildings and topography. The simulated wind speed and direction at the location of each observation station are compared with those of inflow. As a whole, wind speed at observation stations decreases due to the drag effect of buildings. The decrease rate of wind speed is strongly related with total volume of buildings which are located in the upwind direction. It is concluded that the CFD model is a very useful tool to evaluate location of observation station suitability. And it is expected to help produce wind observation data that represent local scale excluding the effects of buildings and topography in urban areas.

Impact of Wind Profiler Data Assimilation on Wind Field Assessment over Coastal Areas

  • Park, Soon-Young;Lee, Hwa-Woon;Lee, Soon-Hwan;Kim, Dong-Hyeok
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.3
    • /
    • pp.198-210
    • /
    • 2010
  • Precise analysis of local winds for the prediction of atmospheric phenomena in the planetary boundary layer is extremely important. In this study, wind profiler data with fine time resolution and density in the lower troposphere were used to improve the performance of a numerical atmospheric model of a complex coastal area. Three-dimensional variational data assimilation (3DVAR) was used to assimilate profiler data. Two experiments were conducted to determine the effects of the profiler data on model results. First, we performed an observing system experiment. Second, we implemented a sensitivity test of data assimilation intervals to extend the advantages of the profiler to data assimilation. The lowest errors were observed when using both radio sonde and profiler data to interpret vertical and surface observation data. The sensitivity to the assimilation interval differed according to the synoptic conditions when the focus was on the surface results. The sensitivity to the weak synoptic effect was much larger than to the strong synoptic effect. The hourly-assimilated case showed the lowest root mean square error (RMSE, 1.62 m/s) and highest index of agreement (IOA, 0.82) under weak synoptic conditions, whereas the statistics in the 1, 3, and 6 hourly-assimilated cases were similar under strong synoptic conditions. This indicates that the profiler data better represent complex local circulation in the model with high time and vertical resolution, particularly when the synoptic effect is weak.

Estimating Spatial Scope of Local Government Ordinance for Onshore Wind Energy Generation Facilities (육상풍력 발전시설 지자체 규제 공간범위 산정 연구)

  • Sung Hee, Hong;So Ra, Kim;Eun Jung, Park;Hye Rim, Lee;Jin Young, Kim;Su Jin, Hwang;Jung Eun, Song
    • New & Renewable Energy
    • /
    • v.18 no.4
    • /
    • pp.38-53
    • /
    • 2022
  • T Recently, the government has been promoting the expansion and supply of renewable energy as an alternative for achieving carbon neutrality and the nationally determined contributions by 2030. In 2020, the Ministries of Industry and Environment and the Korea Forest Service collaborated to build a nationwide onshore wind energy siting atlas considering wind resources and forestry and environmental regulations focused on central regulations. In this study, the ordinances of the local governments were analyzed to examine the effects of regional location regulations on the expansion of onshore wind power energy generation facilities, in addition to those of central regulations. A development permit standard survey of 226 urban plan ordinances of the local governments nationwide showed that presently in 2022, 52 municipalities are applying regulations on wind energy generation facilities by ordinances. This is twice more than that in 2018, when renewable energy power generation facility development was difficult. Additionally, the location regulations applied by these ordinances were organized by items and regions, and regulatory characteristics, such as the number and scope, were analyzed by regions. To analyze the spatial distribution characteristics, JeollaNamdo was selected as the case area. A spatial DB was established for regulated areas based on the regional and central regulations, and the spatial distribution characteristics and the regulatory scope were compared and analyzed.

A Study on the Mitigation Policies for Urban Heat Island (도시열섬 완화를 위한 제도개선)

  • Suh, Eung Chul
    • KIEAE Journal
    • /
    • v.7 no.2
    • /
    • pp.17-23
    • /
    • 2007
  • While heat island has been recognized as an unique environmental nuisance in cities, the phenomenon tends to be regarded as an inevitable side effect on urbanization. Recently the nature of the heat island has been disclosed and efforts for the remedy have been discussed in many ways. Some pioneering actions have been taken to mitigate the strength of the heat island's intensity in several countries. After studies for the heat island and speculations on current pilot policies of 3 different countries has been done, mitigation policies for heat island has been suggested as followings. 1. Preservation of natural topography is essential because latent energy consumption(evapotranspiration) from the site is the single most important factor to mitigate the energy surplus caused by urban heat island. 2. Because current national zoning ordinance or building law can not effectively control the site specific local environment, heat island policy should be established or employed at local level. 3. Incentives for the mitigation should be adopted on the process of implementation because environment is public concern. 4. Wind can easily dissipate energy surplus which is the major driving force for heat island. Therefore local wind, the direction and intensity should be sustained and sometimes facilitated fully through policies.

Improvements in the simulation of sea surface wind over the complex coastal area- I : Assessment of current operational model (복잡 해안지역 해상풍 모의의 정확도 개선- I : 현업모델의 평가)

  • Bae Joo-Hyun;Kim Yoo-Keun;Oh In-Bo;Jeong Ju-Hee;Kweon Ji-Hye;Seo Jang-Won
    • Journal of Environmental Science International
    • /
    • v.14 no.7
    • /
    • pp.657-667
    • /
    • 2005
  • In this study, we focused on the improvements in the simulation of sea surface wind over the complex coastal area. MM5 model being currently used to predict sea surface wind at Korea Meteorological Administration, was used to verify the accuracy to estimate the local wind field. A case study was performed on clear days with weak wind speed(4 m/s), chosen by the analysis of observations. The model simulations were conducted in the southeastern area of Korea during the selected periods, and observational data such as AWS, buoy and QuikSCAT were used to compare with the calculated wind components to investigate if simulated wind field could follow the tendency of the real atmospheric wind field. Results showed that current operational model, MM5, does not estimate accurately sea surface wind and the wind over the coastal area. The calculated wind speed was overestimated along the complex coastal regions but it was underestimated in islands and over the sea. The calculated diurnal changes of wind direction could not follow well the tendency of the observed wind, especially at nighttime. In order to exceed the limitations, data assimilation with high resolution data and more specificated geographical information is expected as a next best policy to estimate accurately the environment of local marine wind field.

Local Wind Field Simulation over Coastal Areas Using Windprofiler Data (윈드프로파일러 자료를 이용한 연안 지역 국지 바람장 모의)

  • Kim, Min-Seong;Kim, Kwang-Ho;Kim, Park-Sa;Kang, Dong-Hwan;Kwon, Byung Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.2
    • /
    • pp.195-204
    • /
    • 2016
  • In this paper, the applicability and usefulness of windprofiler input data were investigated to generate three dimensional wind field. A logical diagnostic model CALMET with windprofiler data at ten sites and with weather forecasting model WRF output was evaluated by statistically comparing with the radiosonde data at eight sites. The horizontal wind speed from CALMET simulated with hourly windprofiler data is in good agreement with radiosonde observations within 1.5 m/s of the root mean square error, especially local circulation of wind such as sea breeze over the coastal region. The root mean square error of wind direction ranged $50^{\circ}{\sim}70^{\circ}$ is due to the wind direction error from the windprofiler polluted by ground clutters. Since the exact wind can be produced quickly and accurately in most of the altitude with windprofiler data on CALMET, we expect the method presented in this study to be useful for the monitoring of safe environment as well as weather in the coastal zone.

Analysis of Local Wind in Busan Metropolitan Area According to Wind Sector Division - Part II : Detailed Wind Information Using A Local-Scale Atmospheric Circulation Model - (바람권역 구분을 통한 부산지역 국지바람 분석 - Part II : 국지 대기유동장 수치모델을 이용한 상세 바람정보 -)

  • Jung, Woo-Sik;Lee, Hwa-Woon;Leem, Heon-Ho
    • Journal of Environmental Science International
    • /
    • v.16 no.1
    • /
    • pp.103-119
    • /
    • 2007
  • We have analysed the observed surface and vertical meteorological data to get atmospheric information over the Busan metropolitan area. For this, we have selected 10 days in all season such as spring, summer I(Jangma season), summer II(hot season), autumn and winter. The result which have performed cluster analysis using atmospheric data represented that these days are included to most frequently appeared synoptic cluster. We have simulated wind field around Busan metropolitan area which is assigned as $1km^2$ using RAMS. The calculated air temperature and the wind speed was similar to the observed the that, and the trends of daily variation showed good agreement. RMSE and IOA also showed reliable value. These results indicated the RAMS is able to simulate and predict detailed atmospheric phenomenon.

Distribution of Wind Force Coefficients on the Three-span Arched House (아치형 3연동하우스의 풍력계수 분포에 관한 연구)

  • 이현우;이석건
    • Journal of Bio-Environment Control
    • /
    • v.2 no.1
    • /
    • pp.46-52
    • /
    • 1993
  • The wind pressure distributions were analyzed through the wind tunnel experiment to provide fundamental criteria for the structural design on the three-span arched house according to the wind directions. In order to investigate the wind force distribution, the variation of the wind force coefficients, the mean wind force coefficients, the drag force coefficients and the lift force coefficients were estimated from the experimental data. The results obtained are as follows : 1. The variation of the wind force with the wind directions on the side walls was the greatest at the upwind edge of the walls. The change of pressure from the positive to the negative on the side walls occurred at the wind direction of 30$^{\circ}$ in the first house and 60$^{\circ}$ in the third house. 2. The maximum negative wind force along the length of the roof appeared at the length ratio of 0-0.2, when the wind directions were 90$^{\circ}$ in the first house, 60$^{\circ}$ in the second house and 30$^{\circ}$ in the third house. 3. The maximum negative wind force along the width of the roof appeared at the width ratio and the wind direction of 0.4 and 0$^{\circ}$ in the first house, 0.4-0.6 and 30$^{\circ}$ in the second house and 0.6 and 30$^{\circ}$ in the third house, respectively. 4. The maximum mean positive and negative wind forces occurred at the wind direction of 60$^{\circ}$ and 30$^{\circ}$, respectively, on the side walls of the first house, and the maximum mean negative wind force on the roof occurred at the wind direction of 30$^{\circ}$ in third house. 5. The maximum drag and lift forces occurred at the wind direction of 30$^{\circ}$, and the maximum lift force appeared in the third house. 6. The parts to be considered for the local wind forces were the edges of the walls, the edges of the x-direction of the roofs, and the locations of the width ratio of 0.4 of the first and third house and the center of the width of the second house for the y-direction of the roofs.

  • PDF

Application of the E-$\varepsilon$turbulence numerical model to a flow and dispersion around triangular ridge( I ) (E-$\varepsilon$모델을 이용한 삼각 봉우리 주변의 유동과 확산 수치해석(I))

  • 정상진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.116-123
    • /
    • 1994
  • The E- $\varepsilon$ turbulence numerical model was applied to a flow around triangular ridge in neutral boundary layer. Scale of cavity region, mean velocity, Reynolds stress and eddy diffusivity were investigated. The height of cavity region was in satifactory agreement with the wind tunnel data while the length of cavity region was underestimated. The man wind velocities outside the cavity region were well Predicted by the model, however in cavity region the mean wind velocities of wind tunnel data were larger than the model results Reynolds stress of cavity region was overestimated by the model. The eddy diffusivity of wake region was strongly modified under the influence of triangular ridge. The local minimum of the eddy diffusivity was occured in the lee of the ridge top.

  • PDF