Browse > Article
http://dx.doi.org/10.7837/kosomes.2016.22.2.195

Local Wind Field Simulation over Coastal Areas Using Windprofiler Data  

Kim, Min-Seong (Geo-Sciences Institute, Pukyong National University)
Kim, Kwang-Ho (Geo-Sciences Institute, Pukyong National University)
Kim, Park-Sa (Geo-Sciences Institute, Pukyong National University)
Kang, Dong-Hwan (Geo-Sciences Institute, Pukyong National University)
Kwon, Byung Hyuk (Department of Environmental Atmospheric Sciences, Pukyong National University)
Publication Information
Journal of the Korean Society of Marine Environment & Safety / v.22, no.2, 2016 , pp. 195-204 More about this Journal
Abstract
In this paper, the applicability and usefulness of windprofiler input data were investigated to generate three dimensional wind field. A logical diagnostic model CALMET with windprofiler data at ten sites and with weather forecasting model WRF output was evaluated by statistically comparing with the radiosonde data at eight sites. The horizontal wind speed from CALMET simulated with hourly windprofiler data is in good agreement with radiosonde observations within 1.5 m/s of the root mean square error, especially local circulation of wind such as sea breeze over the coastal region. The root mean square error of wind direction ranged $50^{\circ}{\sim}70^{\circ}$ is due to the wind direction error from the windprofiler polluted by ground clutters. Since the exact wind can be produced quickly and accurately in most of the altitude with windprofiler data on CALMET, we expect the method presented in this study to be useful for the monitoring of safe environment as well as weather in the coastal zone.
Keywords
CALMET; WRF; CALWRF; Windprofiler; Sea breeze; Local wind field;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Ishihara, M., Y. Kato, T. Abo, K. Kobayashi and Y. Izumikawa(2006), Characteristics and performance of the operational wind profiler network of the Japan Meteorological Agency, Journal of the Meteorological Society of Japan, Vol. 84, pp. 1085-1096.   DOI
2 James, O. P. and W. B. Roger(1998), Analyses of the CALMET/CALPUFF modeling system in a screening mode, Research Triangle Park, NC 27711.
3 Jennifer, B. and S. Joe(2011), Generic guidance and optimum model settings for the calpuff modeling system for inclusion into the 'approved modes for the modeling and assessments of air pollutants in NSW, Australia', NSW office of environment and heritage, Sydney Australia, pp. 1-63.
4 Jeong, J. H., S. Y. Lo, S. K. Song and Y. K. Kim(2010), The application of wind profiler data and its effects on wind distributions in two different coastal areas, Journal of the environmental sciences, Vol. 19, No. 6, pp. 689-701.   DOI
5 Joseph, S. S., R. R. Francoise, E. F. Mark and J. Y. Robert(2000), A user's guide for the calmet meteorological model(Version 5), Earth Tech, Inc., 196 Baker Avernue, Concord, MA 01742, pp. 1-332.
6 Jung, S. H. and G. W. Lee(2010), Statistical Characteristics of Atmospheric Conditions related to Radar Beam Propagating using Radiosonde Data in 2005-2006, Jour. Korean Earth Science Society, Vol. 31, No. 6, pp. 584-599.   DOI
7 Kawamura, T.(1985), Recent change of atmosphere environment in Tokyo and its surrounding area, Geographical review of Japan, Vol. 58, No. 1, pp. 83-94.   DOI
8 Kim, C. H. and J. G. Jhun(1992), Numerical simulations of the three-dimensional land and sea breezes under synoptic flows over south Korea, J. korean meteor. soc., Vol. 28, No. 2, pp. 165-181.
9 Bruce, J., C. Daniel, G. Kemal and A. Kaduwela(2006), Comparison of ozone simulations using MM5 and CALMET/MM5 hybrid meteorological fields for July/August 2000 CCOS episode, Atmospheric Environment, Vol. 40, pp. 2812-2822.   DOI
10 Byon, J. Y., Y. J. Choi and B. K. Seo(2010), Characteristics of a Wind Map over the Koean Peninsula Based on Mesoscale Model WRF, Atmosphere, Vol. 20, No. 2, pp. 195-210.
11 Chandrasekar, A., R. C. Philbrick, R. Clark, B. Doddridge and P. Georgopoulos(2003), Evaluating the performance of a computationally efficient MMT/CALMET system for developing wind field inputs to air quality models, Atmospheric Environment, Vol. 37, pp. 3267-3276.   DOI
12 Dougals, S. G. and R. C. Kessler(1988), User's guide to the diagnostic wind model (Version 1.0), Systems Applications Inc., San Rafel, CA.
13 Dudhia, J.(1989), Numerical Study of Convection Observed during the winter monsoon experiment using a mesoscale two-dimensional model, Journal of the atmospheric sciences, Vol. 46, No. 20, pp. 3077-3107.   DOI
14 Holleman, I., H. van Gasteren and W. Bouten(2008), Quality assessment of weather radar wind profiles during bird migration, J. Atmos. Oceanic Technol., Vol. 25, pp. 2188-2198.   DOI
15 Holtslag, A. A. M. and A. P. Van Ulden(1983), A simple scheme for daytime estimates of the surface fluxes from routine weather data, J. Appl. Meteorol., Vol. 22, pp. 517-529.   DOI
16 Hong, S. Y. and J. O. J. Lim(2006), The WRF single-moment 6-class microphysics scheme (WSM6), Journal of the korean meteorological society, Vol. 42, No. 2, pp. 129-151.
17 Kim, S. T.(2003), A study of fine-scale wind field generation method using MM5 and CALMET in Korea peninsula, Anyang University Master of Science degree, pp. 0-50.
18 Kim, K. H., M. S. Kim, S. W. Seo, P. S. Kim, D. H. Kang and B. H. Kwon(2015), Quality evaluation of wind vectors from UHF wind profiler using radiosonde measurements, Journal of environmental science international, Vol. 24, No. 1, pp. 133-150.   DOI
19 Kim, K. H., P. S. Kim, M. S. Kim, D. H. Kang and B. H. Kwon(2016), Improvement in Wind Vector of UHF Wind Profiler Radar through Removing Ground Echo, Journal of environmental science international, Vol. 25, No. 1, pp. 41-56.   DOI
20 Kim, M. S., B. H. Kwon and D. H. Kang(2014), Estimation of atmospheric turbulent fluxes by the bulk transfer mode over various surface, Journal of environmental science international, Vol. 23, No. 6, pp. 1199-1211.   DOI
21 Kwon, B. H.(2005), Turbulence of the coastal atmospheric surface layer and structure of the coastal atmospheric boundary layer, The Korean Society for Fisheries and Marine Science Education, Vol. 17, No. 3, pp. 404-412.
22 Kwon, B. H., B. Benech, D. Lambert, P. Durand and A. Druihet(1998), Structure of the marine atmospheric boundary layer over an oceanic thermal front: SEMAPHORE experiment, Journal of geophysical research, Vol. 103, No. C11, pp. 25159-25180.   DOI
23 Lee, C. B. and J. C. Kim(2009), Evaluation of the calpuff model using improved meteorological fields in complex terrain of east sea coast, Journal of Korean Society for Atmospheric Environment, Vol. 25, No. 1, pp. 15-25.   DOI
24 Lee, H. W., D. H. Kim, S. H. Lee, M. J. Kim, S. Y. Park and H. G. Kim(2010), Skillful wind field simulation over complex terrain using coupling system of atmospheric prognostic and diagnostic models, Journal of the environmental sciences, Vol. 19, No. 1, pp. 27-37.   DOI
25 Robert, E. and J. Barbre(2012), Quality control algorithm for the Kennedy Space Center 50-MHz Doppler radar wind profiler winds database, J. Atmos. Oceanic Technol., Vol 29, pp. 1731-1743.   DOI
26 Lee, H. W., Y. K. Kim, G. M. Won and I. S. Cho(1999), An emission of pollutants including ship source in the Pusan metropolitan area, Journal of Korean society for atmospheric environment, Journal of Korean Society for Atmospheric Environment, Vol. 15, No. 5, pp. 587-598.
27 Maruri, M., J. A. Romo and L. Gomez(2014), Aspects of quality control of wind profiler measurements, Atmos. Meas. Tech., Vol. 7, pp. 135-148.   DOI
28 Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono and S. A. Clough(1997), Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-K model for the longwave, J. Geophys. Res., Vol. 102, No. D14, pp. 16663-16682.   DOI
29 Yim, S. H. L., J. C. Fung, A. K. H. Lau and S. C. Kot(2007), Developing a high-resolution wind map for a complex terrain with a coupled MM5/CALMET system, J. Geophys. Res., Vol. 112, D05106.