• Title/Summary/Keyword: local wind

Search Result 718, Processing Time 0.034 seconds

Characteristics, mathematical modeling and conditional simulation of cross-wind layer forces on square section high-rise buildings

  • Ailin, Zhang;Shi, Zhang;Xiaoda, Xu;Yi, Hui;Giuseppe, Piccardo
    • Wind and Structures
    • /
    • v.35 no.6
    • /
    • pp.369-383
    • /
    • 2022
  • Wind tunnel experiment was carried out to study the cross-wind layer forces on a square cross-section building model using a synchronous multi-pressure sensing system. The stationarity of measured wind loadings are firstly examined, revealing the non-stationary feature of cross-wind forces. By converting the measured non-stationary wind forces into an energetically equivalent stationary process, the characteristics of local wind forces are studied, such as power spectrum density and spanwise coherence function. Mathematical models to describe properties of cross-wind forces at different layers are thus established. Then, a conditional simulation method, which is able to ex-tend pressure measurements starting from experimentally measured points, is proposed for the cross-wind loading. The method can reproduce the non-stationary cross-wind force by simulating a stationary process and the corresponding time varying amplitudes independently; in this way the non-stationary wind forces can finally be obtained by combining the two parts together. The feasibility and reliability of the proposed method is highlighted by an ex-ample of across wind loading simulation, based on the experimental results analyzed in the first part of the paper.

Numerical Simulation on the Wind Ventilation Lane and Air Pollutants Transport due to Local Circulation Winds in Daegu Districts (대구지역의 국지순환풍의 환기경로 및 대기오염수송에 관한 수치모의)

  • Koo, Hyun-Suk;Kim, Hae-Dong
    • Journal of the Korean earth science society
    • /
    • v.25 no.6
    • /
    • pp.418-427
    • /
    • 2004
  • Recently, urban planning with consideration of urban climate, represented by the concept of urban ventilation lane is widely practiced in many countries. The concept of urban ventilation lane is mainly aimed to improve the thermal comfort within urban area in summer season. It has also the aim to reduce the urban air pollution by natural cold air drainage flows which are to be intensified by a suitable alignment of buildings as well as use zonings based on scientific reasons. In this study, the prevailing wind ventilation lane of a local wind circulation and around Daegu for a typical summer days was investigated by using a numerical simulation. The transport of air pollutants by the local circulation winds was also investigated by using the numerical simulation model, the RAMS (Reasonal Atmospheric Model System).The domain of interest is the vicinity of Daegu metropolitan city (about 900 km2). The horizontal scale of the area is about 30 km. The simulations were conducted under a late spring synoptic condition with weak gradient wind and almost clear sky. From the numerical experiment, the following three conclusions were obtained: (1) The major wind passages of the local circulation wind generated by radiative cooling over the representative mountains of Daegu (Mt. Palgong and Mt. Ap) were found. The winds blow down along the valley axis over the eastern part of Daegu as a gravity flow during nighttime. (2) At the flatland, the winds blow toward the western part of Daegu through the city center. (3) As the results, the air pollutants were transported toward the western part of Daegu by the winds during nighttime.

An Analysis of the Wintertime Diurnal Wind Variation and Turbulent Characteristics over Yongpyong Alpine Slope (용평 알파인 경기장에서 겨울철 바람의 일변화 및 난류 특성분석)

  • Jeon, Hye-Rim;Kim, Byung-Gon;Eun, Seung-Hee;Lee, Young-Hee;Choi, Byoung-Cheol
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.401-412
    • /
    • 2016
  • A 3D sonic anemometer has been installed at Yongpyong alpine slope since Oct. 23th 2014 to observe the slope winds and to analyze turbulent characteristics with the change in surface cover (grass and snow) and the synoptic wind strength. Eddy covariance method has been applied to calculate the turbulent quantity after coordinate transformation of a planar-fit rotation. We have carefully selected 3 good episodes in the winter season (23 October 2014 to 28 February 2015) for each category (9 days in total), such as grass and snow covers in case of weak synoptic wind condition, and grass cover of strong synoptic wind. The diurnal variations of the slope winds were well developed like the upslope wind in the daytime and downslope wind in the nighttime for both surface covers (grass and snow) in the weak synoptic forcing, when accordingly both heat and momentum fluxes significantly increased in the daytime and decreased in the nighttime. Meanwhile, diurnal variation of heat flux was not present on the snow cover probably in associated with significant fraction of sunlight reflection due to high albedo especially during the daytime in comparison to those on the grass cover. In the strong synoptic regime, the most dominant feature at Yongpyong, only the southeasterly downslope winds were steadily generated irrespective of day and night with significant increases in momentum flux and turbulent kinetic energy as well, which could suggest that local circulations are suppressed by the synoptic scale forcing. In spite of only one season analysis applied to the limited domain, this kind of an observation-based study will provide the basis for understanding of the local wind circulation in the complex mountain domain such as Gangwon in Korea.

The Effects of the Changed Initial Conditions on the Wind Fields Simulation According to the Objective Analysis Methods (객관분석기법에 의한 바람장 모의의 초기입력장 변화 효과 분석)

  • Kim, Yoo-Keun;Jeong, Ju-Hee;Bae, Joo-Hyun;Kwun, Ji-Hye;Seo, Jang-Won
    • Journal of Environmental Science International
    • /
    • v.15 no.8
    • /
    • pp.759-774
    • /
    • 2006
  • We employed two data assimilation techniques including MM5 Four Dimensional Data Asssimilation (FDDA) and Local Analysis and Prediction System (LAPS) to find out the effects of the changed inetial conditions on the wind fields simulation according to the objective analysis methods. We designed 5 different modeling cases. EXP B used no data assimilation system. Both EXP Fl using surface observations and EXP F2 with surface and upper-air observations employed MM5 FDDA. EXP Ll using surface observations and EXP L2 with surface and upper-air observations used LAPS. As results of, simulated wind fields using MM5 FDDA showed locally characterized wind features due to objective analysis techniques in FDDA which is forcefully interpolating simulated results into observations. EXP Fl represented a large difference in comparison of wind speed with EXP B. In case of LAPS, simulated horizontal distribution of wind fields showed a good agreement with the patterns of initial condition and EXP Ll showed comparably lesser effects of data assimilation of surface observations than EXP Fl. When upper-air observations are applied to the simulations, while MM5 FDDA could hardly have important effects on the wind fields simulation and showed little differences with simulations with merely surface observations (EXP Fl), LAPS played a key role in simulating wind fields accurately and it could contribute to alleviate the over-estimated winds in EXP Ll simulations.

Structural Design of Medium Scale Composite Wind Turbine Blade

  • Kong, Chang-Duk;Kim, Jong-Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.92-102
    • /
    • 2000
  • In this study, the 750kW medium scale composite blade for the horizontal axis wind turbine system was designed and manufactured, and it was tested and evaluated by the specific structural test rig. In the test, it was found that local bucklings at the trailing edge of the blade and excessive deflections at the blade tip were happened. In order to solve these problems, the design of blade structure was modified. After improving the design, the abrupt change of deflection at the blade tip was reduced by smooth variation of the spar thickness and the local buckling was removed by extending the web length. The modified design was analyzed by the FEM, the safety and stability of the blade structure. And Fatigue life over 20 years was confirmed by using S-N linear damage method, Spera's method, etc.

  • PDF

Studies of High-Ozone Episodes in the Greater Seoul Area between 1990 and 1997 (1990~1997 기간 중 서울.수도권 지역의 고농도 오존 사례 연구)

  • 김영성;오현선
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.3
    • /
    • pp.267-280
    • /
    • 1999
  • To investigate the characteristics of high-ozone occurrences in the Greater Seoul Area(GSA), three high-ozone episodes were selected, for which the ozone warning for concentration above 120 ppb might be issued. The selection was on the basis of morning wind directions and speeds, and daily maximum ozone concentrations measured between 1990 and 1997. The episodes chosen to meet selection criteria were seven days in July 1992, nine days in July 1994, and three days in August 1994, as respectively characterized by southwesterly, easterly, and calm winds in the morning. However, more than 80% of high-ozone days in the GSA were associated with calm winds and the concomitant accumulation of local emission in the morning, rather than being due to transport of ozone or its precursors. This is believed to be the primary reason why ozone concentrations in the GSA varied in a completely different manner even between adjacent monitoring stations. Several premises for initiating research studies for resolving these local variations of ozone concentrations in the GSA are also discussed.

  • PDF

Wind Tunnel Test to Enhance Aerodynamic Characteristics of Forward Swept Wing Airplane (전진익형 항공기 공력특성 증진을 위한 풍동시험)

  • Chung, Jin-Deog;Lee, Jang-Yeon;Sung, Bong-Zoo;Lee, Jong-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.800-808
    • /
    • 2004
  • Wind tunnel test of an airplane model with forward swept wing was done in KARI LSWT to evaluate and measure the aerodynamic characteristics of initially designed configuration. Since the given wing planform did not fully satisfy the design requirements, local flow control devices such as vortilon, vortex generator and flow fence were used to delay separation and to enhance aerodynamic characteristics. Also decision making processes of design parameters such as vertical tail boom length, the location, size and the incidence angle of horizontal tail were discussed. The general aerodynamic characteristics of forward swept wing for various control surface deflection conditions of flap, aileron and elevator were also given.

Wind field generation for performance-based structural design of transmission lines in a mountainous area

  • Lou, Wenjuan;Bai, Hang;Huang, Mingfeng;Duan, Zhiyong;Bian, Rong
    • Wind and Structures
    • /
    • v.31 no.2
    • /
    • pp.165-183
    • /
    • 2020
  • The first step of performance-based design for transmission lines is the determination of wind fields as well as wind loads, which are largely depending on local wind climate and the surrounding terrain. Wind fields in a mountainous area are very different with that in a flat terrain. This paper firstly investigated both mean and fluctuating wind characteristics of a typical mountainous wind field by wind tunnel tests and computational fluid dynamics (CFD). The speedup effects of mean wind and specific turbulence properties, i.e., turbulence intensity, power spectral density (PSD) and coherence function, are highlighted. Then a hybrid simulation framework for generating three dimensional (3D) wind velocity field in the mountainous area was proposed by combining the CFD and proper orthogonal decomposition (POD) method given the properties of the target turbulence field. Finally, a practical 220 kV transmission line was employed to demonstrate the effectiveness of the proposed wind field generation framework and its role in the performance-based design. It was found that the terrain-induce turbulence effects dominate the performance-based structural design of transmission lines running through the mountainous area.

Electromagnetic Field Analysis of 230 kW-class Low Wind Speed Medium Wind Turbine for Island-area Application (도서지역 적용을 위한 230 kW급 저풍속 중형 풍력발전기의 전자장해석)

  • Choi, Mansoo;Choi, Hyewon;Lee, Changmin;Choi, Hyenjun
    • New & Renewable Energy
    • /
    • v.16 no.2
    • /
    • pp.14-19
    • /
    • 2020
  • Recently, a project to build a carbon zero island with no carbon emissions has been carried out by replacing diesel generators with renewable energy sources in island areas where diesel generators supplied local loads as independent systems. To minimize damage to the lives of islanders, low noise wind generators should be installed by adjusting the rated speed. In islands with low loads, wind turbines that are more efficient than medium-sized wind turbines should be installed. In this study, the generator field analysis and characteristics were analyzed to develop 230 kW-class low wind medium-wind turbine technology. The electromagnetic field analysis program used Maxwell. As a result, the cogging torque was reduced, and the initial maneuver wind speed and loss value were lowered. Hence, the output amount was increased with high efficiency.

The Effects of Data Assimilation on Simulated Wind Fields Using Upper-Air Observations (고층기상관측자료를 이용한 바람장 개선 효과 연구)

  • Jeong, Ju-Hee;Kwun, Ji-Hye;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.16 no.10
    • /
    • pp.1127-1137
    • /
    • 2007
  • We focused on effects on data assimilation of simulated wind fields by using upper-air observations (wind profiler and sonde data). Local Analysis Prediction System (LAPS), a type of data assimilation system, was used for wind field modeling. Five cases of simulation experiments for sensitivity analysis were performed: which are EXP0) non data assimilation, EXP1) surface data, EXP2) surface data and sonde data, EXP3) surface data and wind profiler data, EXP4) surface data, sonde data and wind profiler data. These were compared with observation data. The result showed that the effects of data assimilation with wind profiler data were found to be greater than sonde data. The delicate wind fields in complex coastal area were simulated well in EXP3. EXP3 and EXP4 using wind profiler data with vertically high resolution represented well sophisticated differences of wind speed compared with EXP1 and EXP2, this is because the effects of wind profiler data assimilation were sensitively adjusted to first guess field than those of sonde observations.