• 제목/요약/키워드: local weather forecast

검색결과 61건 처리시간 0.031초

태양광 발전 예보를 위한 UM-LDAPS 예보 모형 성능평가 (Evaluation of UM-LDAPS Prediction Model for Daily Ahead Forecast of Solar Power Generation)

  • 김창기;김현구;강용혁;윤창열
    • 한국태양에너지학회 논문집
    • /
    • 제39권2호
    • /
    • pp.71-80
    • /
    • 2019
  • Daily ahead forecast is necessary for the electricity balance between load and supply due to the variability renewable energy. Numerical weather prediction is usually employed to produce the solar irradiance as well as electric power forecast for more than 12 hours forecast horizon. UM-LDAPS model is the numerical weather prediction operated by Korea Meteorological Administration and it generates the 36 hours forecast of hourly total irradiance 4 times a day. This study attempts to evaluate the model performance against the in situ measurements at 37 ground stations from January to May, 2013. Relative mean bias error, mean absolute error and root mean square error of hourly total irradiance are averaged over all ground stations as being 8.2%, 21.2% and 29.6%, respectively. The behavior of mean bias error appears to be different; positively largest in Chupoongnyeong station but negatively largest in Daegu station. The distinct contrast might be attributed to the limitation of microphysics parameterization for thick and thin clouds in the model.

Review of Operational Multi-Scale Environment Model with Grid Adaptivity

  • Kang, Sung-Dae
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제10권S_1호
    • /
    • pp.23-28
    • /
    • 2001
  • A new numerical weather prediction and dispersion model, the Operational Multi-scale Environment model with Grid Adaptivity(OMEGA) including an embedded Atmospheric Dispersion Model(ADM), is introduced as a next generation atmospheric simulation system for real-time hazard predictions, such as severe weather or the transport of hazardous release. OMEGA is based on an unstructured grid that can facilitate a continuously varying horizontal grid resolution ranging from 100 km down to 1 km and a vertical resolution from 20 -30 meters in the boundary layer to 1 km in the free atmosphere. OMEGA is also naturally scale spanning and time. In particular, the unstructured grid cells in the horizontal dimension can increase the local resolution to better capture the topography or important physical features of the atmospheric circulation and cloud dynamics. This means the OMEGA can readily adapt its grid to a stationary surface, terrain features, or dynamic features in an evolving weather pattern. While adaptive numerical techniques have yet to be extensively applied in atmospheric models, the OMEGA model is the first to exploit the adaptive nature of an unstructured gridding technique for atmospheric simulation and real-time hazard prediction. The purpose of this paper is to provide a detailed description of the OMEGA model, the OMEGA system, and a detailed comparison of OMEGA forecast results with observed data.

  • PDF

Simulation of Grape Downy Mildew Development Across Geographic Areas Based on Mesoscale Weather Data Using Supercomputer

  • Kim, Kyu-Rang;Seem, Robert C.;Park, Eun-Woo;Zack, John W.;Magarey, Roger D.
    • The Plant Pathology Journal
    • /
    • 제21권2호
    • /
    • pp.111-118
    • /
    • 2005
  • Weather data for disease forecasts are usually derived from automated weather stations (AWS) that may be dispersed across a region in an irregular pattern. We have developed an alternative method to simulate local scale, high-resolution weather and plant disease in a grid pattern. The system incorporates a simplified mesoscale boundary layer model, LAWSS, for estimating local conditions such as air temperature and relative humidity. It also integrates special models for estimating of surface wetness duration and disease forecasts, such as the grapevine downy mildew forecast model, DMCast. The system can recreate weather forecasts utilizing the NCEP/NCAR reanalysis database, which contains over 57 years of archived and corrected global upper air conditions. The highest horizontal resolution of 0.150 km was achieved by running 5-step nested child grids inside coarse mother grids. Over the Finger Lakes and Chautauqua Lake regions of New York State, the system simulated three growing seasons for estimating the risk of grape downy mildew with 1 km resolution. Outputs were represented as regional maps or as site-specific graphs. The highest resolutions were achieved over North America, but the system is functional for any global location. The system is expected to be a powerful tool for site selection and reanalysis of historical plant disease epidemics.

기상자료 공간내삽과 작물 생육모의기법에 의한 전국의 읍면 단위 쌀 생산량 예측 (Yield and Production Forecasting of Paddy Rice at a Sub-county Scale Resolution by Using Crop Simulation and Weather Interpolation Techniques)

  • 윤진일;조경숙
    • 한국농림기상학회지
    • /
    • 제3권1호
    • /
    • pp.37-43
    • /
    • 2001
  • Crop status monitoring and yield prediction at higher spatial resolution is a valuable tool in various decision making processes including agricultural policy making by the national and local governments. A prototype crop forecasting system was developed to project the size of rice crop across geographic areas nationwide, based on daily weather pattern. The system consists of crop models and the input data for 1,455 cultivation zone units (the smallest administrative unit of local government in South Korea called "Myun") making up the coterminous South Korea. CERES-rice, a rice crop growth simulation model, was tuned to have genetic characteristics pertinent to domestic cultivars. Daily maximum/minimum temperature, solar radiation, and precipitation surface on 1km by 1km grid spacing were prepared by a spatial interpolation of 63 point observations from the Korea Meteorological Administration network. Spatial mean weather data were derived for each Myun and transformed to the model input format. Soil characteristics and management information at each Myun were available from the Rural Development Administration. The system was applied to the forecasting of national rice production for the recent 3 years (1997 to 1999). The model was run with the past weather data as of September 15 each year, which is about a month earlier than the actual harvest date. Simulated yields of 1,455 Myuns were grouped into 162 counties by acreage-weighted summation to enable the validation, since the official production statistics from the Ministry of Agriculture and Forestry is on the county basis. Forecast yields were less sensitive to the changes in annual climate than the reported yields and there was a relatively weak correlation between the forecast and the reported yields. However, the projected size of rice crop at each county, which was obtained by multiplication of the mean yield with the acreage, was close to the reported production with the $r^2$ values higher than 0.97 in all three years.

  • PDF

한-일 단기 수치예보자료를 이용한 강우 및 홍수 예측 성능 비교 (Performance comparison of rainfall and flood forecasts using short-term numerical weather prediction data from Korea and Japan)

  • 유완식;윤성심;최미경;정관수
    • 한국수자원학회논문집
    • /
    • 제50권8호
    • /
    • pp.537-549
    • /
    • 2017
  • 본 연구에서는 기상청에서 제공하는 국지예보모델(LDAPS)과 일본 기상청의 중규모모델(Meso-Scale Model, MSM)을 이용하여 태풍 및 정체전선 등 3개의 강우사상과 남강댐 유역 내 산청 유역에 대해 강우 및 홍수 예측 정확도를 평가하고 비교 검토하였다. 강우예측 정확도 평가 결과, LDAPS와 MSM 모두 태풍 사상과 같은 광역적인 예측에 대해서는 예측 정확도가 높은 것으로 나타났으나, 정체전선과 같이 국지적으로 발생하는 강우사상의 경우 예측 오차가 많이 발생하는 것으로 나타났다. 홍수예측 정확도 평가 결과, 선행시간이 증가함에 따라 점점 예측 정확도가 향상되는 것을 확인할 수 있었으며, LDAPS와 MSM 모두 기상 및 수자원간의 연계를 통하여 강우 및 홍수 예측 분야에서의 활용 가능성을 확인할 수 있었다.

제주 지역에 적합한 중규모 단시간 예측 시스템의 개발 (Development of Meso-scale Short Range NWP System for the Cheju Regional Meteorological Office, Korea)

  • 김용상;최준태;이용희;오재호
    • 한국지구과학회지
    • /
    • 제22권3호
    • /
    • pp.186-194
    • /
    • 2001
  • 제주 지방 기상청을 대상으로 하는 지역 규모 단시간 수치예보 시스템을 구축하였다. 기상청 본청에서 하루 2회 제공되는 30 km해상도의 수치예보 자료로는 지방 기상청의 예보관들이 우리 나라와 같이 복잡한 지형에서 발생하는 그 지역의 국지 악기상을 파악하기에는 무리가 있다. 지역 규모의 고해상도 수치예보를 위해 LAPS와 MM5를 자료분석과 예보 모델로 이용하였다. LAPS는 양질의 수치예보 초기자료를 생산해 내기 위해 종관 관측 자료뿐만 아니라 위성 및 레이더 등의 비 종관 관측자료도 자료동화에 이용한다. MM5 모델은 16노드의 펜티엄 PC로 구성된 클러스터에서 수행되었으며 이 시스템은 분산병렬 클러스터 컴퓨터로 가격대비 성능이 매우 우수한 미니 슈퍼컴퓨터이다. 자료동화 모델, 수치예보 모델 그리고 PC-클러스터를 종합한 지역 규모 단시간 수치예보 시스템을 한라 단시간 예측 시스템이라 명명하였으며 이 시스템은 현재 제주 지방 기상청에서 독자적으로 운영되고 있다. 기상청 본청에서 제공되는 수치예보 정보로는 탐지할 수 없었던 1999년 7월 9일 제주 지역의 집중호우 사례에 대하여 본 시스템을 검증한 결과 모델이 예측한 강수량이 실제 강수량을 잘 재현하였다. 한라 단시간 예측 시스템은 2000년 4월부터 하루 4회 제주 지방기상청에서 독자적으로 운영되고 있다.

  • PDF

비축대칭 3차원 모조 소용돌이를 이용한 열대저기압의 진로 및 강도예측 (Tropical Cyclone Track and Intensity Forecast Using Asymmetric 3-Dimensional Bogus Vortex)

  • 이재덕;정형빈;강현규;권인혁
    • 대기
    • /
    • 제24권2호
    • /
    • pp.207-223
    • /
    • 2014
  • The bogussing method was further developed by incorporating the asymmetric component into the symmetric bogus tropical cyclone of the Structure Adjustable Balanced Vortex (SABV). The asymmetric component is separated from the disturbance field associated with the tropical cyclone by establishing local polar coordinates whose center is the location of the tropical cyclone. The relative importance of wave components in azimuthal direction was evaluated, and only two or three wave components with large amplitude are added to the symmetric components. Using the Weather Research and Forecast model (WRF), initialized with the asymmetric bogus vortex, the track and central pressure of tropical cyclones were predicted. Nine tropical cyclones, which passed over Korean peninsula during 2010~2012 were selected to assess the effect of asymmetric components. Compared to the symmetric bogus tropical cyclone, the track forecast error was reduced by about 18.9% and 17.4% for 48 hours and 72 hours forecast, while the central pressure error was not improved significantly. The results suggest that the inclusion of asymmetric component is necessary to improve the track forecast of tropical cyclones.

심층신경망을 활용한 활주로 가시거리 예측 모델 개발 (Development for Estimation Model of Runway Visual Range using Deep Neural Network)

  • 구성관;홍석민
    • 한국항행학회논문지
    • /
    • 제21권5호
    • /
    • pp.435-442
    • /
    • 2017
  • 안개 등의 영향을 받는 활주로 시정은 비행장에서 항공기 이착륙의 가능 여부를 결정하는 주요 지표중 하나이다. 운송용 항공기가 운항되는 공항의 경우 활주로 시정을 포함한 주요 국지 기상 예보를 시행하며, 이를 항공종사자가 확인할 수 있도록 하고 있다. 본 논문은 최근 영상 처리, 음성 인식, 자연어 처리 등의 다양한 분야에 적용되고 있는 심층신경망을 활주로 시정 예측에 적용하여 국지 비행장의 활주로 시정 예측 모델을 개발하고 이를 활용한 예측을 수행하였다. 적용 대상 비행장의 과거 실제 기상 관측 값을 활용하여 신경망 학습 후 시정에 대한 예측을 수행하였고, 기존 관측 데이터와 비교한 결과 비교적 정확한 예측 결과를 확인하였다. 또한 개발된 모델은 별도의 예보 기능이 없는 해당 비행장에서 참고할 수 있는 기상정보를 생성하는데 사용될 수 있을 것이다.

적운 모수화 방안이 고해상도 집중호우 예측에 미치는 영향 (Impact of Cumulus Parameterization Schemes with Different Horizontal Grid Sizes on Prediction of Heavy Rainfall)

  • 이재복;이동규
    • 대기
    • /
    • 제21권4호
    • /
    • pp.391-404
    • /
    • 2011
  • This study investigates the impact of cumulus parameterization scheme (CPS) with different horizontal grid sizes on the simulation of the local heavy rainfall case over the Korean Peninsula. The Weather Research and Forecasting (WRF)-based real-time forecast system of the Joint Center for High-impact Weather and Climate Research (JHWC) is used. Three CPSs are used for sensitivity experiments: the BMJ (Betts-Miller-Janjic), GD (Grell-Devenyi ensemble), and KF (Kain-Fritsch) CPSs. The heavy rainfall case selected in this study is characterized by low-level jet and low-level transport of warm and moist air. In 27-km simulations (DM1), simulated precipitation is overestimated in the experiment with BMJ scheme, and it is underestimated with GD scheme. The experiment with KF scheme shows well-developed precipitation cells in the southern and the central region of the Korean Peninsula, which are similar to the observations. All schemes show wet bias and cold bias in the lower troposphere. The simulated rainfall in 27-km horizontal resolution has influence on rainfall forecast in 9-km horizontal resolution, so the statements on 27-km horizontal resolution can be applied to 9-km horizontal resolution. In the sensitivity experiments of CPS for DM3 (3-km resolution), the experiment with BMJ scheme shows better heavy rainfall forecast than the other experiments. The experiments with CPS in 3-km horizontal resolution improve rainfall forecasts compared to the experiments without CPS, especially in rainfall distribution. The experiments with CPS show lower LCL(Lifted Condensation Level) than those without CPS at the maximum rainfall point, and weaker vertical velocity is simulated in the experiments with CPS compared to the experiments without CPS. It means that CPS suppresses convective instability and influences mainly convective rainfall. Consequently, heavy rainfall simulation with BMJ CPS is better than the other CPSs, and even in 3-km horizontal resolution, CPS should be applied to control convective instability. This conclusion can be generalized by conducting more experiments for a variety of cases over the Korean Peninsula.

수도권 지역의 도시 기상 특성 (Characteristics of Urban Meteorology in Seoul Metropolitan Area of Korea)

  • 김연희;최다영;장동언
    • 대기
    • /
    • 제21권3호
    • /
    • pp.257-271
    • /
    • 2011
  • The aim of this study is to examine weather modification by urbanization and human activities. The characteristics of the urban heat island (UHI) and precipitation in Seoul metropolitan area of Korea are investigated to demonstrate that cities can change or modify local and nearby weather and climate, and to confirm that cities can initiate convection, change the behavior of convective precipitation, and enhance downstream precipitation. The data used in this study are surface meteorological station data observed in Seoul and its nearby 5 cities for the period of 1960 to 2009, and 162 Automatic Weather System stations data observed in the Seoul metropolitan area from 1998 to 2009. Air temperature and precipitation amount tend to increase with time, and relative humidity decreases because of urbanization. Similar to previous studies for other cities, the average maximum UHI is weakest in summer and is strong in autumn and winter, and the maximum UHI intensity is more frequently observed in the nighttime than in the daytime, decreases with increasing wind speed, and is enhanced for clear skies. Relatively warm regions extend in the east-west direction and relatively cold regions are located near the northern and southern mountains inside Seoul. The satellite cities in the outskirts of Seoul have been rapidly built up in recent years, thus exhibiting increases in near-surface air temperature. The yearly precipitation amount during the last 50 years is increased with time but rainy days are decreased. The heavy rainfall events of more than $20mm\;hr^{-1}$ increases with time. The substantial changes observed in precipitation in Seoul seem to be linked with the accelerated increase in the urban sprawl in recent decades which in turn has induced an intensification of the UHI effect and enhanced downstream precipitation. We also found that the frequency of intense rain showers has increased in Seoul metropolitan area.