• Title/Summary/Keyword: local sweat rate

Search Result 16, Processing Time 0.019 seconds

A Study of Sweating Reaction by the Somato Types (체형별 발한 반응에 관한 연구)

  • Sim, Bu-Ja
    • Journal of the Ergonomics Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.65-82
    • /
    • 1998
  • To investigate the difference of sweating reaction by the somato types, we measured total sweat rate, local sweat rate, skin temperature, physiological reaction and psychological reaction at $25{\pm}1^{\circ}C$ and $29{\pm}1^{\circ}C$ under laboratory conditons. Nine healthy adult females were divided into three somato types : slender (3), normal (3) and obese (3). The results were as follows ; Total sweat rate was highest in the obese type, followed by the normal and slender types in order. Local sweat rate was highest in the infrascapular area, and then came breast, the back of the hand, upper ann, anterior leg, and anterior thigh in all somato types. Mean skin temperature was highest in the slender type, and followed the normal and obese types. Rectal temperature, blood pressure and pulse rate were highest in the obese type. Psychological reaction appeared 'hot', 'humid', 'sweaty' as ambient temperature went up. Somato types made little difference in psychological reaction.

  • PDF

A study of sweating reaction on somato type (체형별 발한 반응에 관한 연구)

  • 심부자
    • Proceedings of the ESK Conference
    • /
    • 1997.10a
    • /
    • pp.72-96
    • /
    • 1997
  • To investigate the difference of sweating reaction on somato types. We measured total sweat rate, locl sweat rate, skin temperature, physiological reactions and psyschological reactions at $25{\pm}1^{\circ}C$ and $25{\pm}1^{\circ}C$ under laboratory conditions. Nine healthy adult females were divided into three somato types (slender(3), normal(3) and obese type(3)). The results were as follows; Total sweat rate was highest in obese type, and then comes normal type and slender type in order. Local sweat rate was highest in infrascapular area, and then breast, the back of the hand, upperarm, ant. leg, and ant. thigh in order in all somato types. Mean skin temperature was highest in slender type, and then normal type and obese type in order. Rectal temperature, blood pressure and pulse rate were highest in boese type. Psychological reactions were appeared 'hot' 'humid' 'sweat' as ambient temperature go up. And somato types make little difference in psychological reactions.

  • PDF

The Study on the Sweating Responses of Adult Female according to Garment types (의복형태에 따른 성인여성의 발한반응에 관한 연구)

  • Yeom Hee Gyong;Choi Jeong Wha
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.16 no.4 s.44
    • /
    • pp.405-416
    • /
    • 1992
  • This study was performed to investigate correlation between total body weight loss and local sweat rate and to find out any possible method that can estimate total body weight loss judging from local sweat rate. Twelve adult females were kept at 44 $\pm1^{\circ}C$, 50 ${\pm}5\%$ R.H. (1) Physiological responses such as total body weight loss, local sweat rate, rectal temperature, skin temperature, blood pressure and pulse, (2) micro climate inside garment and (3) subjective sensation were examined. Two types of garment such as long-sleeves with long pants (Type I) and half·sleeves with short pants (Type II) were used to observe the effect of garment types on sweating response. Both clothing weight was equal (132$\pm$3 g/$m^{2}$). The results were as follows: 1. Regardless of the different types, total body weight loss was more interrelated with the sweat rate on forehead than any other parts of the body. Except the forehead, different parts of body with different types of garment influenced on body weight loss quite differently. 2. Total body weight loss was more interrelated with the weight gain of garment than the local sweat rate. 3. Under the environment of 44$\pm1^{\circ}C,\;50{\pm}5\%$R.H., body weight loss during 1 hour of subject clothed and silted was 275.2 g/hr and weight loss per body surface area was 178.9 g/$m^{2}/hr$ Garment types have no influences on total body weight loss. 4. Local sweat rate (mg/7.07 $cm^{2}/hr$) was 208.0,191.0, 133.0, 115.0,81 0, 75.1 and 66.3 on scruff, breast, forehead, forearm, thigh, upper arm, leg respectively No evidence has been found that garment types influenced on local sweat rate (p<0.1). 5. No interrelationships between rectal temperature and total body weight loss, local skin temperature and total body weight loss, and local skin temperature and local sweat rate were found. From this study, some possible method that we can estimate total body' weight loss judging from weight loss of garment. But considering the fact that clothing design factor, the physical characteristics of fabric and environmental factor such as humidity and wind velocity should be concerned in weight loss of garment, it should be studied further whether the total body weight loss can be estimated properly from the weight loss of garment. This experiment suggest that different parts of body with different types of garment can influence on body weight loss quite differently. Therefore, in order to get more precise results, more studies under the diversity of garment types should be done in the near future.

  • PDF

Sweating Reaction of Men Adults - Centered on Athletes and Non-Athletes - (성인(成人) 남자(男子)의 발한(發汗) 반응(反應)에 관한 연구 - 운동선수(運動選手)와 비운동선수(非運動選手)를 중심(中心)으로 -)

  • Shim, Boo-Ja
    • Journal of Fashion Business
    • /
    • v.3 no.1
    • /
    • pp.125-137
    • /
    • 1999
  • The present study aims to reveal the sweating reaction of male adults, focused on athletes. With six subjects (3 athletes and 3 non-athletes) in two different conditions of ambient temperature (I : $25\pm1.0^{\circ}C$, II : $29.5\pm1.0^{\circ}C$), their total sweat rate, local sweat rate, skin temperature, physiological reaction (rectal temperature, blood pressure, and pulse rate), and psychological reaction (thermal, moisture, comfort, and perceptive sweat sensations) were measured. The comparison gave the following results: Total sweating rate was greater in non-athletes, while the two groups had more perspiration in ambience II. Local sweating rate in both ambiences was the greatest in the central breast area (athletes) and the infrascapular area (non-athletes). The mean skin temperature had more changes of increase and decrease in athletes. As to physiological reaction, non-athletes had lower rectal temperature and blood pressure as well as higher pulse rate. As for psychological reaction in Ambience II, the 4 sensations were mostly 'hot', 'humid', 'uncomfortable', and 'sweaty'.

  • PDF

Seasonal Acclimatization in Summer versus Winter to Changes in the Sweating Response during Passive Heating in Korean Young Adult Men

  • Lee, Jeong-Beom;Kim, Tae-Wook;Min, Young-Ki;Yang, Hun-Mo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2015
  • We investigated the sweating response during passive heating (partial submersion up to the umbilical line in $42{\pm}0.5^{\circ}C$ water, 30 min) after summer and winter seasonal acclimatization (SA). Testing was performed in July during the summer, 2011 [summer-SA; temp, $25.6{\pm}1.8^{\circ}C;$ relative humidity (RH), $82.1{\pm}8.2%$] and in January during the winter, 2012 (winter-SA; temp, $-2.7{\pm}2.9^{\circ};$ RH, $65.0{\pm}13.1%$) in Cheonan ($126^{\circ}52^{\prime}N$, 33.38'E), Republic of Korea. All experiments were carried out in an automated climatic chamber (temp, $25.0{\pm}0.5^{\circ}C$: RH, $60.0{\pm}3.0%$). Fifteen healthy men (age, $23.4{\pm}2.5$ years; height, $175.0{\pm}5.9cm;$ weight, $65.3{\pm}6.1kg$) participated in the study. Local sweat onset time was delayed during winter-SA compared to that after summer-SA (p<0.001). Local sweat volume, whole body sweat volume, and evaporative loss volume decreased significantly after winter-SA compared to those after summer-SA (p<0.001). Changes in basal metabolic rate increased significantly after winter-SA (p<0.001), and tympanic temperature and mean body temperature were significantly lower after summer-SA (p<0.05). In conclusion, central sudomotor acitivity becomes sensitive to summer-SA and blunt to winter-SA in Rebubic of Korea. These results suggest that the body adjusts its temperature by economically controlling the sweating rate but does not lower the thermal dissipation rate through a more effective evaporation scheme after summer-SA than that after winter-SA.

Physiological Responses of Wearing Industrial Gaiters in a Hot Environment (더운 환경에서 산업용 각반 착용 시 인체생리반응)

  • Choi, Jeong-Wha;Park, Joon-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.7
    • /
    • pp.1129-1136
    • /
    • 2008
  • The gaiter is one of the personal protective equipments worn in various industrial sites. This study was performed on humans to investigate the physiological strain of wearing gaiters and to compare control gaiters that are currently on the market and new gaiters that are developed for alleviating heat stress. Experiments were conducted in a climatic chamber of WBGT $30.0\pm0.7^{\circ}C$ under five differed experimental conditions: None, Control A, Control B, New A, New B. The results were as follows. The temperature inside gaiters was significantly lower in both New A and New B than in both Control A and Control B and the difference between news and controls was 1$^{\circ}C$ (p<.01). The humidity inside gaiters in both New A and New B were higher than that in Control A, and lower than that in Control B (p<.01). The outermost surface temperature of the gaiter was the lowest in None and it increased in the following order: New B < New A < Control A < Control B. Mean skin temperature was higher by 0.14$^{\circ}C$ in wearing gaiters than in no gaiters. Skin temperatures in lower body were lower in Control than in New and skin temperature in upper body were higher in Control than in New (p<.01). Local sweat rate, total weight loss and subjective sensations did not show a significant difference according to the gaiters. It was concluded that wearing gaiters affected distribution of skin temperature and local sweat rate.

Effect on the Human Thermoregulation of Wear Training in Air Condition (여름철 냉방 조건에서의 착의 훈련이 인체의 체온 조절 반응에 미치는 효과)

  • Kim, Mi-Kyung;Choi, Jeong-Wha;Yeom, Hee-gyong
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.19 no.3
    • /
    • pp.504-515
    • /
    • 1995
  • This study was performed to investigate that wear training using thermal insulation with clothes has the effect on the human thermoregulatory response, especially on the heat tolerance. Twelve men and women in twenties wert divided into the control group, the training groups and each group except the control group had participated in wear training. The heat tolerance was assessed in all subjects who had participated in the experiment carried out in hot environment(40$\pm$1$^{\circ}C$, 50$\pm$5%RH) by such parameters as rectal temperature, skin temperature, systolic blood pressure, diastolic blond pressure, plume rate, total sweat volume, local sweat volume, subjective sensation, and the differences of heat tolerance in each group were compared. The results were as follows: In hot environment(4$0^{\circ}C$) the changing width of rectal temperature was decreased in the control and the heavy clothing group. Forehead and abdomen temperature in hot environment were significantly decreased after the training. Sweat rate was higher after the training than before. In all experimental groups, systolic and diastolic blood pries.;uses in hot environment(4$0^{\circ}C$) were significantly decreased after the training.

  • PDF

The effect of posture on the human thermoregulatory response (인체의 자세가 체온조절에 미치는 영향)

  • Shim, Hyun Sup;Choi, Jeong Wha
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.3
    • /
    • pp.415-427
    • /
    • 1993
  • The purpose of this study was to evaluate the thermoregulatory responses to postures under different environmental conditions and to obtain the basal information for standard clothing weight, indoor climates, and working condition. Two adult female (22.5yrs, 46kg) were participated in this study. The experimental conditions were divided into three groups ; 1) comfort($27{\pm}1^{\circ}C$, $60{\pm}10%$), 2) hot($34{\pm}1^{\circ}C$, $60{\pm}10%$), and 3) cold($21{\pm}1^{\circ}C$, $50{\pm}10%$) condition. The postures performed were as follows; standing, sitting on the chair, sitting on the floor, and supine on the floor. At each condition, subjective sensations, 12 points skin temperature, rectal temperature, total and local sweat rate, pulse rates, blood pressure, skin blood flow rate were measured. The results were as follows : 1. Rectal temperature was high significant among groups in order of supine, sitting on the floor, sitting on the chair, standing posture(p<0.01). 2. Skin temperature was high in part of contact with the surface of the floor or wall and the effect of posture was greater in peripheral temperature than torso temperature. Sitting on the chair and sitting on the floor posture showed higher peripheral temperature than standing and supine posture. And peripheral temperature was lower in supine posture than any other postures. 3. Total and local sweat rate were decreased in order of standing, sitting on the chair, sitting on the floor, supine posture. 4. Pulse rate and disastolic blood pressure were higher in standing posture than supine posture, and there was significant difference between two postures(p<0.001). 5. Blood flow rate of thigh was high in sitting on the chair and sitting on the floor posture and low in standing posture. Blood flow rate of leg was low in standing posture significantly(p<0.01). 6. In comfort and hot condition, temperature sensation and comfort sensation were higher in standing posture and lower in supine posture than any other postures. In cold condition, temperature sensation was lower and comfort sensation was higher in standing and supine posture than any other postures. And supine posture was appeared positive in hot condition and negative in cold condition. From this study, we confirmed the effects of posture on human thermoregulatory responses. Results indicate that even under same conditions and clothing weight, the insulation of clothing will be different to postures.

  • PDF

The Wearing Sense of Male Adult Shoes - Comparison of Common Shoes with Elevated Shoes -

  • Shim, Boo-Ja;Yoo, Hyun
    • Journal of Fashion Business
    • /
    • v.11 no.6
    • /
    • pp.35-51
    • /
    • 2007
  • This research was administered in order to know the effects of heels on the foot by comparing the foot environmental characteristics when common shoes and elevated shoes are worn. First, 157 male adults in their 20s through 40s living in Busan were the inquiry subjects to reveal the shoes-wearing reality of adult males. Second, 7 male adults in their early 20s became the subjects for the experiments of wearing common shoes and elevated shoes. 1. Inquiry Results of Shoes-Wearing Reality Common-shoes wearers were in the order: 20s (43.9%) > 30s (24.8%) > 40s (8.3%). Elevated-shoes wearers were mostly 20s (12.1%), followed by 30s (8.3%) and 40s (2.5%). Among the wearing effects of elevated shoes were 'looking taller' (66.7%), 'no height complex & more confidence' (30.6%), and 'higher work efficiency' (2.8%). In sum, 97.3% of the male subjects believed in great positive effects by wearing elevated shoes. 2. Shoes-Wearing Experiment Results In foot skin temperature, significant differences between the two groups were admitted in outer foot a (p<0.05) and other areas (p<0.001), except in the instep. Elevated-shoes group had bigger skin temperature, while the order of temperature was the instep, the big toe, inner foot a/b/c and outer foot a/b/c. Significant difference was accepted in total sweat rate (p<0.05) and local sweat rate (p<0.01). Elevated-shoes group appeared higher in both rates. Significant difference (p<0.001) between the two groups was recognized in fatigue degrees after wearing, whereas significance (p<0.05) in elevated-shoes group was approved in fatigue before and after exercise. So elevated-shoes group experienced more fatigue, especially after exercise.

Physiological Responses and Subjective Sensations of Human Wearing Soccer Wear of Different Materials and Designs (축구복 소재와 디자인이 인체생리반응과 주관적 감각에 미치는 영향)

  • Choi Jeong-Wha;Kim So-Young;Jeon Tae-Won
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.1 s.139
    • /
    • pp.35-45
    • /
    • 2005
  • The purpose of this study was to evaluate thermal properties of soccer wear with different materials and designs. As a beginning step, the questionnaire survey about the actual condition of soccer wears was conducted. with the results of the questinnaire, two soccer wears with new material and design that were improved in tactile sensations, absorption and ventilation were developed. We evaluated thermal and subjective responses of subjects wearing Korea national soccer team uniform in 1998 World Cup (Uniform 98), soccer wear with new material and same design(New II) and with new material and new design(New I). New I was made with mesh in armhole for improving ventilation. Rectal temperature, skin temperature, clothing microclimate, and heart rate were measured in climatic chamber test(twelve times) and field test(eighteen times). The results were as follows. 1. As the results of the climatic chamber test, rectal temperature was lower in New I and New II than Uniform98, and mean skin temperature was lower in New I than Uniform 98 and New II. Heart rate was lower in New I than New II, and total body weight loss and local sweating were not significantly different by soccer wears. 2. As the results of the field test, rectal temperature was lower in New I than Uniform98 and New II. Mean skin temperature was lower in New II than Uniform98 and New I. Clothing microclimate temperature was lower in New II than Uniform98 and New 1, and clothing microclimate humidity was lower in New I, New II than Uniform 98. Heart rate was lower in New I than Uniform 98, New II and total body weight loss and local sweating were lower in New I, New II than Uniform 98. In conclusion, New I using new design using mesh in armhole and new material using sweat absorbent finishing was excellent from the point of view of physical responses, ventilation and sweat absorption.