• 제목/요약/키워드: local route recovery

Search Result 17, Processing Time 0.024 seconds

An Improved Route Recovery using Bidirectional Searching Method for Ad hoc Networks (Ad hoc 네트워크에서의 양방향 경로탐색을 이용한 경로복구 개선 방안)

  • Han, Ho-Yeon;Nam, Doo-Hee;Kim, Seung-Cheon
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • Since the ad-hoc network allow nodes to communicate each other without infrastructure system and predefined configuration, it comes into the spotlight that is suitable to ubiquitous society. In ad-hoc network, route recovery mechanism is considered important. Normally route recovery is needed to solve the link failure problem because there is no route maintaining system like a router in ad-hoc networks. In this paper we propose BS-AODV(Bidirectional Searching-AODV) route recovery method. The proposed method is a local repair method that can be applied in all of the network area. Unlike a limited local repair method in AODV. the proposed method adopts the bidirectional searching method where the upstream/downstream nodes can send the route maintenance messages. Restricting the flooding of route request messages, the proposed scheme attempts to minimize the costs of local repair, the performance of the proposed scheme is evaluated through the simulations. In two scenarios which variate the node numbers and node speed, the comparison among the proposed scheme, AODV and AOMDV is shown in terms of the control traffic and data delivery ratio.

PDAODMRP: An Extended PoolODMRP Based on Passive Data Acknowledgement

  • Cai, Shaobin;Yang, Xiaozong;Wang, Ling
    • Journal of Communications and Networks
    • /
    • v.6 no.4
    • /
    • pp.362-375
    • /
    • 2004
  • An ad hoc network is a multi-hop wireless network. Its limited bandwidth and frequently changing topology require that its protocol should be robust, simple, and energy conserving. We have proposed PoolODMRP to reduce its control overhead greatly by its one-hop local route maintenance. However, PoolODMRP still has some shortcomings. In this paper, we propose PDAODMRP (passive data acknowledgement ODMRP) to extend PoolODMRP. Compared with PoolODMRP, PDAODMRP has the following contributions: (1) It knows the status of its downstream forwarding nodes by route information collected from data packets instead of BEACON signal of MAC layer; (2) it max simplifies the route information collected from data packets by pool nodes; (3) it adopts a dynamic local route maintenance to enforce its local route maintenance; (4) it adopts the route evaluation policy of NSMP (neighbor supporting multicast protocol). Compared with PoolODMRP, PDAODMRP has lower control overhead, lower data delivery delay, and lower data overhead.

Redundancy Path Routing Considering Associativity in Ad Hoc Networks (Ad Hoc Network에서 Associativity을 고려한 Redundancy 경로 라우팅)

  • 이학후;안순신
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10c
    • /
    • pp.199-201
    • /
    • 2003
  • Ad hoc network은 stationary infrastructure의 도움 없이 이동 노드들이 필요 시 network 형태을 구성하여 통신이 이루어지게 하는 network으로 ad hoc network 환경에 맞는 다양한 라우팅 프로토콜들이 개발되었고 크게는 table­driven, on­demand 방식으로 나눌 수 있는데 on­demand 방식의 AODV 프로토콜은 routing overhead가 적다는 장점이 있는 반면 single path로 data forwarding을 진행하여 중간노드의 이동에 의한 path가 broken되는 경우 local routing을 하거나 새로이 source­initialed route rediscovery을 수행하여 전송 delay 및 control traffic overhead 등을 높이는 결과를 발생 시켰다. 본 논문은 single path로 구성되는 AODV 프로토콜의 route failures시 문제점을 보완한 Associativity Based Redundancy path Routing(ABRR) 및 Alternate Redundancy path Routing(ARR) schemes을 제안한다. 첫째, ABRR은 main path상에 있는 각 노드들은 associativity based stable node 정보를 이용하여 path broken 이전에 local redundancy path을 구성하여 path broken시 local routing없이 route을 복구할 수 있게 하고 둘째, ARR은 source­initialed route discovery에 의해 alternate path을 구성하여 ABRR 그리고 local routing에 의해 main route recovery 실패 시 alternate path을 main path로 전환하여 control traffic overhead 및 전송 delay을 줄이게 한다.

  • PDF

A Performance Analysis of Routing Protocols Avoiding Route breakages in Ad hoc Networks (애드 흑 네트워크에서 경로 손실 회피 라우팅 프로토콜의 성능평가)

  • Wu Mary;Jung Sang Joon;Jung Youngseok;Kim Chonggun
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.1
    • /
    • pp.49-58
    • /
    • 2006
  • When the movement of a node breaks the route in ad-hoc network, on-demand routing protocol performs the local route recovery or a new route search for the route maintenance. And when it performs the new route search or the local search, the packet which is transmitted can be delayed. There are ARMP and RPAODV as the methods reducing the delay resulted from the route-breakage. They predict the route-breakage and construct an alterative local route before the occurrence of the route-breakage. When the link state is unstable, the success rate of the alternative local route that can avoid the route-breakage can give a direct effect on the route-breakage and the transmission delay, To estimate the performance of routing protocols avoiding route-breakage, we suggest the numerical formulas of AODV, the representative on-demand routing protocol, and ARMP, RPAODV. To verify the efficiency and accuracy of the proposed numerical formulas, we analysis and compare with the results of the computer simulation and that of the numerical formulas.

AFLRS: An AODV-based Fast Local Repair Scheme in Ad Hoc Networks (AFLRS: 애드 혹 네트워크에서 AODV에 기반한 빠른 경로 복구 기법)

  • 서현곤;김기형;서재홍
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.1
    • /
    • pp.81-90
    • /
    • 2004
  • A Mobile Ad Hoc Network (MANET) is a collection of wireless mobile nodes dynamically self-organizing in arbitrary and temporary network topologies without the use of any existing network infrastructure. The AODV (Ad Hoc On-Demand Distance Vector) Protocol is one of the typical reactive routing protocols, in that mobile nodes initiate routing activities only in the presence of data packets in need of a route. In this paper, we focus upon the local repair mechanism of AODV. When a link is broken, the upstream node of the broken link repairs the route to the destination by initiating a local route discovery process. The process involves the flooding of AODV control messages in every node within a radius of the length from the initiating node to the destination. In this paper, we propose an efficient local repair scheme for AODV called AFLRS (AODV-based Fast Local Repair Scheme). AFLRS utilizes the existing routing information in the intermediate nodes which have been on the active route to the destination before a link break occurs. AFLRS can reduce the flooding range of AODV control messages and the route recovery time because it can repair route through the intermediate nodes. For the performance evaluation of the proposed AFLRS, we have simulated the local repair mechanisms by using NS2 and AODV-UU. The performance results show that AFLRS can achieve faster route recovery than the local repair mechanism of AODV.

An AODV Re-route Methods for Low-Retransmission in Wireless Sensor Networks (무선센서네트워크에서 저-재전송율을 위한 AODV 경로 재설정 방법)

  • Son, Nam-Rye;Jung, Min-A;Lee, Sung-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9A
    • /
    • pp.844-851
    • /
    • 2010
  • Recently, AODV routing protocol which one of the table driven method for the purpose data transmission between nodes has been broadly used in mobile wireless sensor networks. An existing AODV has a little overhead of routing packets because of keeping the routing table for activity route and re-routes to recovery the routes in route discontinuation. However that has faults in that excesses useless of the network bandwidth to recovery the route and takes a lone time to recovery the route. This paper proposes an efficient route recovery method for AODV based on wireless sensor networks in connection breaks. The proposed method. The propose method controls the number of RREQ message considering the energy's node and distance between nodes to restrict the flooding range of RREQ message while expanding the range of local repair. In test results, the proposed method are compared to existing method, the number of drops decrease 15.43% and the delay time for re-route decrease 0.20sec.

A Route Repair Scheme for Reducing DIO Poisoning Overhead in RPL-based IoT Networks (RPL 기반 IoT 네트워크에서 DIO Poisoning 오버헤드를 감소시키는 경로 복구 방법)

  • Lee, Sung-Jun;Chung, Sang-Hwa
    • Journal of KIISE
    • /
    • v.43 no.11
    • /
    • pp.1233-1244
    • /
    • 2016
  • In the IoT network environments for LLNs(Low power and Lossy networks), IPv6 Routing Protocol for Low Power and Lossy networks(RPL) has been proposed by IETF(Internet Engineering Task Force). The goal of RPL is to create a directed acyclic graph, without loops. As recommended by the IETF standard, RPL route recovery mechanisms in the event of a failure of a node should avoid loop, loop detection, DIO Poisoning. In this process, route recovery time and control message might be increased in the sub-tree because of the repeated route search. In this paper, we suggested RPL route recovery method to solve the routing overhead problem in the sub-tree during a loss of a link in the RPL routing protocol based on IoT wireless networks. The proposed method improved local repair process by utilizing a route that could not be selected as the preferred existing parents. This reduced the traffic control packet, especially in the disconnected node's sub tree. It also resulted in a quick recovery. Our simulation results showed that the proposed RPL local repair reduced the recovery time and the traffic of control packets of RPL. According to our experiment results, the proposed method improved the recovery performance of RPL.

A Path Fault Avoided RPAODV Routing in Ad Hoc Networks (Ad Hoc 네트워크의 경로손실 회피기반 RPAODV 라우팅)

  • Wu Mary;Kim Youngrak;Kim Chonggun
    • The KIPS Transactions:PartC
    • /
    • v.11C no.7 s.96
    • /
    • pp.879-888
    • /
    • 2004
  • Ad Node transmits packets to a destination node using routing function of intermediate nodes on the path in Ad Hoc networks. When the link to a next hop node in a path is broken due to the next hop node's mobility, a new route search process is required for continuing packets transmission. The node which recognizes link fault starts a local route recovery or the source node starts a new route search in the on demand routing protocol AODV. In this case, the new route search or the local route search brings packet delays and bad QoSs by packet delay. We propose RPAODV that the node predicts a link fault selects a possible node in neighbor nodes as a new next hop node for the path. The proposed protocol can avoid path faults and improve QoS.

On Improving Reliability of E-ODMRP (E-ODMRP의 신뢰성 향상에 관한 연구)

  • Jung, Young-Woo;Park, Joon-Sang
    • The KIPS Transactions:PartC
    • /
    • v.17C no.6
    • /
    • pp.465-470
    • /
    • 2010
  • In this paper we propose a method which can be used to enhance the reliability of E-ODMRP (Enhanced On-Demand Multicast Routing Protocol). E-ODMRP has low overhead compared to its predecessors since it performs periodic refresh at a rate dynamically adapted to the nodes' mobility and adopts the local recovery. Upon detecting a broken route, a node performs a local search to graft to the forwarding mesh proactively. However in E-ODMRP there is no packet recovery mechanism. A receiver may lose some packets when it is detached from the multicast tree. We propose a simple packet recovery mechanism that can be incorporated into E-ODMRP for enhanced reliability. We show via simulation that our mechanism effectively enhances the reliability of E-ODMRP.

A Method for Reducing Path Recovery Overhead of Clustering-based, Cognitive Radio Ad Hoc Routing Protocol (클러스터링 기반 인지 무선 애드혹 라우팅 프로토콜의 경로 복구 오버헤드 감소 기법)

  • Jang, Jin-kyung;Lim, Ji-hun;Kim, Do-Hyung;Ko, Young-Bae;Kim, Joung-Sik;Seo, Myung-hwan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.280-288
    • /
    • 2019
  • In the CR-enabled MANET, routing paths can be easily destroyed due to node mobility and channel unavailability (due to the emergence of the PU of a channel), resulting in significant overhead to maintain/recover the routing path. In this paper, network caching is actively used for route maintenance, taking into account the properties of the CR. In the proposed scheme, even if a node detects that a path becomes unavailable, it does not generate control messages to establish an alternative path. Instead, the node stores the packets in its local cache and 1) waits for a certain amount of time for the PU to disappear; 2) waits for a little longer while overhearing messages from other flow; 3) after that, the node applies local route recovery process or delay tolerant forwarding strategy. According to the simulation study using the OPNET simulator, it is shown that the proposed scheme successfully reduces the amount of control messages for path recovery and the service latency for the time-sensitive traffic by 13.8% and 45.4%, respectively, compared to the existing scheme. Nevertheless, the delivery ratio of the time-insensitive traffic is improved 14.5% in the proposed scheme.