• 제목/요약/키워드: local positioning system

검색결과 109건 처리시간 0.03초

AoA-Based Local Positioning System Using a Time-Modulated Array

  • Baik, Kyung-Jin;Lee, Sangjoon;Jang, Byung-Jun
    • Journal of electromagnetic engineering and science
    • /
    • 제17권4호
    • /
    • pp.181-185
    • /
    • 2017
  • In this paper, we propose an angle-of-arrival (AoA)-based local positioning system using a time-modulated array (TMA). The proposed system can determine a two-dimensional position using only two TMAs without any synchronization between the two receivers. The hardware for the proposed system consists of two commercial monopole antennas, a self-designed switch, and a well-known software-defined radio receiver. Furthermore, the location can be simply estimated in real time without the need for complicated positioning algorithms such as the MUSIC and ESPRIT algorithms. In order to evaluate the performance of our system, we estimated the position of the wireless node in an office environment. The position was estimated with a mean error of less than 0.1 m. We therefore believe that our system is appropriate for various wireless local positioning applications.

무인 이동 로봇 위치추정을 위한 초음파 위성 시스템 (USAT(Ultrasonic Satellite System) for the Autonomous Mobile Robots Localization)

  • 이동활;김수용;윤강섭;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제13권10호
    • /
    • pp.956-961
    • /
    • 2007
  • We propose a new distance measurement method and local positioning system for the autonomous mobile robots localization. The distance measurement method is able to measure long-range distances with a high accuracy by using ultrasonic sensors. The time of flight of the ultrasonic waves include various noises is calculated accurately by the proposed period detecting method. The proposed local positioning system is composed of four ultrasonic transmitters and one ultrasonic receiver. The ultrasonic transmitter and receiver are separated but they are synchronized by RF (Radio frequency) signal. The proposed system using ultrasonic waves is represented as USAT(Ultrasonic Satellite System). USAT is able to estimate the position using the least square estimation. The experimental results show that the proposed local positioning system enables to estimate the absolute position precisely.

실내에서 스마트폰의 글로벌 좌표 인식 시스템에 관한 연구 (A Study on Global Positioning System of Smart Phone in indoor)

  • 오종택
    • 한국인터넷방송통신학회논문지
    • /
    • 제15권2호
    • /
    • pp.151-156
    • /
    • 2015
  • 스마트폰의 사용이 크게 활성화됨에 따라 거의 모든 사람들이 항상 휴대하고 있으며, 실외에서는 GPS 위성시스템을 이용하여 자신의 위치를 인식하고 관련된 응용 서비스를 제공받을 수 있다. 그러나 실내에서는 스마트폰의 위치를 인식하기도 어렵고 TDOA 방식의 상대 위치를 측정하는 방식에서는 글로벌 좌표를 인식할 수 없다. 본 논문에서는 음향 신호를 이용한 TDOA 방식의 상대 위치 추정 시스템에서, GPS 수신기와 지자기 센서를 이용하여 실내에서 스마트폰의 글로벌 좌표를 인식하는 시스템이 제안되었고, 그 성능과 실험 결과가 기술되었다.

Improvement of location positioning using KNN, Local Map Classification and Bayes Filter for indoor location recognition system

  • Oh, Seung-Hoon;Maeng, Ju-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권6호
    • /
    • pp.29-35
    • /
    • 2021
  • 본 논문에서는 위치 측위의 정확도를 높일 수 있는 방안으로 KNN(K-Nearest Neighbor)과 Local Map Classification 및 Bayes Filter를 융합한 기법을 제안한다. 먼저 이 기법은 Local Map Classification이 실제 지도를 여러 개의 Cluster로 나누고, 다음으로 KNN으로 Cluster들을 분류한다. 그리고 Bayes Filter가 획득한 각 Cluster의 확률을 통하여 Posterior Probability을 계산한다. 이 Posterior Probability으로 로봇이 위치한 Cluster를 검색한다. 성능 평가를 위하여 KNN과 Local Map Classification 및 Bayes Filter을 적용하여서 얻은 위치 측위의 결과를 분석하였다. 분석 결과로 RSSI 신호가 변하더라도 위치 정보는 한 Cluster에 고정되면서 위치 측위의 정확도가 높아진다는 사실을 확인하였다.

A Testbed of Performance Evaluation for Fingerprint Based WLAN Positioning System

  • Zhao, Wanlong;Han, Shuai;Meng, Weixiao;Zou, Deyue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권6호
    • /
    • pp.2583-2605
    • /
    • 2016
  • Fingerprint positioning is a main stream and key technique for seamless positioning systems. In this paper, we develop a performance evaluation testbed for fingerprint based Wireless Local Area Network (WLAN) positioning system. The testbed consists of positioning server, positioning terminal, Access Point (AP) units, positioning accuracy analysis system and testing scenarios. Different from other testbeds tended to focus on testing in same situation, in the proposed testbed, a couple of scenarios are set to test the positioning system including indoor and outdoor environments. Handset-side positioning mode and network-side positioning mode are provided simultaneously. Variety of motion models, such as static model, low-speed model and high-speed model are considered as well as different positioning algorithms. Finally, some implementation cases are analyzed to verify the credibility of the testbed.

Multi-constellation Local-area Differential GNSS for Unmanned Explorations in the Polar Regions

  • Kim, Dongwoo;Kim, Minchan;Lee, Jinsil;Lee, Jiyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제8권2호
    • /
    • pp.79-85
    • /
    • 2019
  • The mission tasks of polar exploration utilizing unmanned systems such as glacier monitoring, ecosystem research, and inland exploration have been expanded. To facilitate unmanned exploration mission tasks, precise and robust navigation systems are required. However, limitations on the utilization of satellite navigation system are present due to satellite orbital characteristics at the polar region located in a high latitude. The orbital inclination of global positioning system (GPS), which was developed to be utilized in mid-latitude sites, was designed at $55^{\circ}$. This means that as the user is located in higher latitudes, the satellite visibility and vertical precision become worse. In addition, the use of satellite-based wide-area augmentation system (SBAS) is also limited in higher latitude regions than the maximum latitude of signal reception by stationary satellites, which is $70^{\circ}$. This study proposes a local-area augmentation system that additionally utilizes Global Navigation Satellite System (GLONASS) considering satellite navigation system environment in Polar Regions. The orbital inclination of GLONASS is $64.8^{\circ}$, which is suitable in order to ensure satellite visibility in high-latitude regions. In contrast, GLONASS has different system operation elements such as configuration elements of navigation message and update cycle and has a statistically different signal error level around 4 m, which is larger than that of GPS. Thus, such system characteristics must be taken into consideration to ensure data integrity and monitor GLONASS signal fault. This study took GLONASS system characteristics and performance into consideration to improve previously developed fault detection algorithm in the local-area augmentation system based on GPS. In addition, real GNSS observation data were acquired from the receivers installed at the Antarctic King Sejong Station to analyze positioning accuracy and calculate test statistics of the fault monitors. Finally, this study analyzed the satellite visibility of GPS/GLONASS-based local-area augmentation system in Polar Regions and conducted performance evaluations through simulations.

Local optimization of thruster configuration based on a synthesized positioning capability criterion

  • Xu, Shengwen;Wang, Lei;Wang, Xuefeng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권6호
    • /
    • pp.1044-1055
    • /
    • 2015
  • DPCap analysis can assist in determining the maximum environmental forces the DP system can counteract for a given heading. DPCap analysis results are highly affected by the thrust forces provided by the thrust system which consists of several kinds of thrusters. The thrust forces and moment are determined by the maximum thrust of the thrusters as well as the thruster configuration. In this paper, a novel local optimization of thruster configuration based on a synthesized positioning capability criterion is proposed. The combination of the discrete locations of the thrusters forms the thruster configuration and is the input, and the synthesized positioning capability is the output. The quantified synthesized positioning capability of the corresponding thruster configuration can be generated as the output. The optimal thruster configuration is the one which makes the vessel has the best positioning capability. A software program was developed based on the present study. A local optimization of thruster configuration for a supply vessel was performed to demonstrate the effectiveness and efficiency of the program. Even though the program cannot find the global optimal thruster configuration, its high efficiency makes it essentially practical in an engineering point. It may be used as a marine research tool and give guidance to the designer of the thrust system.

An Efficient Positioning Algorithm using Ultrasound and RF

  • Kim, Seung-Beom;Park, Chan-Sik;Kang, Dong-Youn;Yun, Hee-Hak;Ahn, Bierng-Chearl;Cha, Eun-Jong;Lee, Sang-Jeong
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권4호
    • /
    • pp.544-550
    • /
    • 2008
  • In this paper, an efficient positioning algorithm is proposed for a local positioning system using ultrasound and RF in WSN. The proposed positioning algorithm is the modified Savarese method where measurement noise characteristics are included as a weighting. Furthermore the ill-conditioned and the singularity problem occurred when all beacons are installed at the same height are removed. And the method is applicable to 2D positioning with 2 beacons only. The experiments with implemented system show the accurate seamless positioning less than 2cm error both static and dynamic experiments while the original Savarese method can not provide positions.

LBS를 위한 새로운 측위오차 보정 기법 (Novel Compensation Method of Positioning Error for LBS)

  • 박영식;황유민;김진영
    • 한국위성정보통신학회논문지
    • /
    • 제8권2호
    • /
    • pp.62-67
    • /
    • 2013
  • 최근 위성항법장치를 활용한 GPS(Global Positioning System)를 통해 위성에서 보내는 위치정보를 이용하여 사용자에게 다양한 서비스를 제공하는 위치기반서비스가 이뤄지고 있다. 하지만 위성신호의 특성상 고층 건물이 밀집되어 있는 도심과 같은 지역에서는 반사, 굴절로 인해 오차를 가진 위치정보를 얻게 된다. 본 연구과제는 GPS 위치신호 오차를 보정하기 위해 사용자의 이동방향 정보의 방향벡터를 계산하여 분산된 위치좌표를 방향벡터 위로 보정하는 후처리 알고리즘을 제안하고자 한다. 도심지역에서의 차량주행 실험을 통하여 기존 GPS 보다 평균 11.1m(43%)의 정확도 향상을 통하여 제안한 후처리 알고리즘의 우수성을 입증하였다.

위치기반서비스를 위한 지도정보가 반영된 옥내측위통합 시스템 (Integrated Indoor Positioning Systems Reflecting Map Information for Location Based Services)

  • 임재걸;주재훈;정승환
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제17권1호
    • /
    • pp.131-153
    • /
    • 2008
  • So many location based service systems, including automobile navigation system logistic management, taxi fleet management, and so on, are being used everywhere. However, these are all outdoors. This paper provides a stepping stone for commercial indoor location based services by developing an integrated system of our indoor positioning and map viewer modules. For the indoor positioning, we propose WLAN (Wireless Local Area Network) based EKF (Extended Kalman Filter) which estimates user's current location and tracts user's trace in the sequence of time. Our map viewer renders a map recorded in an Autocad DXF file and provides functions of map manipulation such as zoom-in, zoom-out, and move. We integrate our indoor positioning and map viewer modules and discuss the experimental results of the integrated system.