This paper introduces a numerical procedure to incorporate elasto-plastic local deformation effects in the dynamic analysis of beams. The appealing feature is that simple beam type finite elements can be used for the global model which needs not to be altered by the localized elasto-plastic deformations. An overlapping local sophisticated 2D membrane model replaces the internal forces of the beam elements in the predefined region where the localized deformations take place. An iterative coupling technique is used to perform this replacement. Comparisons with full membrane analysis are provided in order to illustrate the accuracy and efficiency of the method developed herein. In this study, the membrane formulation is able to capture the elasto-plastic material behaviour based on the von Misses yield criterion and the associated flow rule for plane stress. The Newmark time integration method is adopted for the step-by-step dynamic analysis.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권9호
/
pp.3186-3203
/
2021
In this paper, a multi-scale local difference directional number (MLDDN) pattern is proposed for pig identification. Firstly, the color images of individual pig are converted into grey images by the most significant bits (MSB) quantization, which makes the grey values have better discrimination. Then, Gabor amplitude and phase responses on different scales are obtained by convoluting the grey images with Gabor masks. Next, by calculating the main difference of local edge directions instead of traditionally edge information, the directional numbers of Gabor amplitude and phase responses are encoded. Finally, the block histograms of the encoded images are concatenated on each scale, and the maximum pooling is adopted on different scales to avoid the high feature dimension. Experimental results on two pigsties show that MLDDN impressively outperforms the other widely used local descriptors.
This paper proposes texture descriptor for texture classification called Local Neighbor Differences (LND). LND is a high discriminating texture descriptor and also robust to illumination changes. The proposed descriptor utilizes the sign of differences between surrounding pixels in a local neighborhood. The differences of those pixels are thresholded to form an 8-bit binary codeword. The decimal values of these 8-bit code words are computed and they are called LND values. A histogram of the resulting LND values is created and used as feature to describe the texture information of an image. Experimental results, with respect to texture classification accuracies using OUTEX_TC_00001 test suite has been performed. The results show that LND outperforms LBP method, with average classification accuracies of 92.3% whereas that of local binary patterns (LBP) is 90.7%.
본 논문은 특징을 효과적으로 병합하여 계층적 색인구조를 적용하는 광고영상의 분류기법에 대한 체계적 방법을 제안한다. 본 방법은 온라인 및 오프라인 상의 광고 영상 정보 관리를 위한 효과적인 응용으로써, 특별히 광고 영상정보의 추적을 위한 전처리 과정을 제공한다. 이를 위하여 전체 영상에 대한 일반적 정보를 포함하는 전역특징과 영상의 지역적 특성에 기반하는 지역특징을 고려한다. 고안된 지역특징은 영상 회전, 스케일링, 잡음추가, 빛의 변화에 불변하여 아핀(Affine) 변환에 의한 화면 차 영상에 대하여도 신뢰성 높은 매칭 도를 얻을 수 있고 동질의 영상 쌍을 검색하는데 있어서도 높은 정확도를 보여준다. 제안 방법은 우선 전역특징으로 전체영상자료에서 다수의 영상 쌍들로 개략적인 영상 군을 구성한 후에, 영상군안에서 지역특징에 의한 동질 영상 쌍들 즉 정밀한 영상 군들로 분리하는 정밀 매칭을 실행한다. 실행시간을 단축하기 위해 전형적인 클러스터링으로 전역특성이 유사한 영상들끼리 그룹화 함으로서 지역특징에 의한 동질 영상 쌍 간 과도한 매칭 시간의 문제점을 극복한다.
온라인 서명검증을 위해서는 서명의 국부적인 형태가 중요한 판단 근거가 된다. 함수적 접근이나 매개변수적 접근과 같은 지금까지의 접근방법은 서명을 시간에 대한 함수로 나타내거나, 특징집합으로 표현함으로써, 서명의 국부적인 모양을 무시한 채로 서명검증에서 유용한 요소로 사용될 수 있는 국부적인 모양에서의 다양한 특징, 국부적인 모양의 변화, 형태의 복잡성 등을 사용하지 않았다. 이 논문에서는 서명을 구성 형태에 근거한 구조적인 표현 방법으로 나타내어 서명의 국부적인 모양의 분석과 중요한 부분에 대한 선택적인 사용이 가능한 새로운 접근방식의 서명 검증 기법을 제시하였다. 즉, 서명의 구조적 표현에 근거하여 국부적 가중치 적용방법과 진위판단을 위한 임계치의 개인별 차등화 방법을 고안하였고, 이에 대한 실험결과를 분석하였다.
The performance of face recognition methods using subspace projection is directly related to the characteristics of their basis images, especially in the cases of local distortion or partial occlusion. In order for a subspace projection method to be robust to local distortion and partial occlusion, the basis images generated by the method should exhibit a part-based local representation. We propose an effective part-based local representation method named locally salient ICA (LS-ICA) method for face recognition that is robust to local distortion and partial occlusion. The LS-ICA method only employs locally salient information from important facial parts in order to maximize the benefit of applying the idea of 'recognition by parts.' It creates part-based local basis images by imposing additional localization constraint in the process of computing ICA architecture I basis images. We have contrasted the LS-ICA method with other part-based representations such as LNMF (Localized Non-negative Matrix Factorization)and LFA (Local Feature Analysis). Experimental results show that the LS-ICA method performs better than PCA, ICA architecture I, ICA architecture II, LFA, and LNMF methods, especially in the cases of partial occlusions and local distortion
얼굴추적은 3차원 공간상에서 머리(head)와 안면(face)의 움직임을 추정하는 기술로, 얼굴 표정 감정인식과 같은 상위 분석단계의 중요한 기반기술이다. 본 논문에서는 AAM 기반의 얼굴추적 알고리즘을 제안한다. AAM은 변형되는 대상을 분할하고 추적하는데 광범위하게 적용되고 있다. 그러나 여전히 여러 가지 해결해야할 제약사항들이 있다. 특히 자체중첩(self-occlusion)과 부분적인 중첩, 그리고 일시적으로 완전히 가려지는 완전중첩 상황에서 보통 국부해에 수렴(local convergence)하거나 발산하기 쉽다. 본 논문에서는 이러한 중첩상황에 대한 AAM의 강인성을 향상시키기 위해서 SIFT 특징을 이용하고 있다. SIFT는 일부 영상의 특징점으로 안정적인 추적이 가능하기 때문에 자체와 부분중첩에 효과적이며, 완전중첩의 상황에도 SIFT의 전역적인 매칭성능으로 별도의 재초기화 없이 연속적인 추적이 가능하다. 또한 추적과정에서 큰 자세변화에 따른 움직임을 효과적으로 추정하기 위해서 다시점(multi-view) 얼굴영상의 SIFT 특징을 온라인으로 등록하여 활용하고 있다. 제안한 알고리즘의 이러한 강인성은 위 세 가지 중첩상황에 대해서 기존 알고리즘들과의 비교실험을 통해서 보여준다.
본 논문에서는 관계 벡터 공간상의 특징 대응에 관한 확률적 해석에 기반한 새로운 부분 인식 기법을 제안한다. 효과적인 인식을 위해 물체를 관계 속성 그래프(Attributed Relational Graph; ARG)와 관계 벡터 공간들의 집합으로 표현한다. 또한 잡음이나 특징 소실로 인한 왜곡을 관계 벡터 공간에서의 관계 벡터 분포에 대한 왜곡으로 확률적으로 모델링한다. 제안하는 부분 인식 기법은 두 단계로 이루어진다. 우선 지역적인 특징(local feature)과 구조적인 일관성(structural consistency)을 사용하여 후보집합을 추출한다. 이렇게 추출된 후보집합 각각에 대해 관계 벡터 공간상에서의 에러 분석과 반복적인 voting 알고리즘을 통해 특징 소실을 검출한다. 실제 영상에 대한 실험 결과를 통해 제안한 알고리즘이 잡음이나 가리어짐이 심한 경우에도 강건한 성능을 보임을 알 수 있으며, 릴렉세이션(relaxation) 기법과 수행 시간 비교 분석을 통해 계산량 측면에서의 성능 향상을 확인할 수 있다.
Communications for Statistical Applications and Methods
/
제19권5호
/
pp.655-662
/
2012
Classification is an important research field in pattern recognition with high-dimensional predictors. The support vector machine(SVM) is a penalized feature selector and classifier. It is based on the hinge loss function, the non-convex penalty function, and the smoothly clipped absolute deviation(SCAD) suggested by Fan and Li (2001). We developed the algorithm for the multiclass SVM with the SCAD penalty function using the local quadratic approximation. For multiclass problems we compared the performance of the SVM with the $L_1$, $L_2$ penalty functions and the developed method.
Since degraded region of input image can cause false minutiae which lead to decrease identification performance, use minutiae belong to only good quality to ensure true minutiae. This paper suggests image quality measuring method with respect to local and global orientation of ridges. In order to verify a suggested method, PDFs of quality indices derived by local and global feature are computed and then, classifying each image block using Bayesian decision theory.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.