• 제목/요약/키워드: local feature

검색결과 939건 처리시간 0.03초

Iterative global-local approach to consider the local effects in dynamic analysis of beams

  • Erkmen, R. Emre;Afnani, Ashkan
    • Coupled systems mechanics
    • /
    • 제6권4호
    • /
    • pp.501-522
    • /
    • 2017
  • This paper introduces a numerical procedure to incorporate elasto-plastic local deformation effects in the dynamic analysis of beams. The appealing feature is that simple beam type finite elements can be used for the global model which needs not to be altered by the localized elasto-plastic deformations. An overlapping local sophisticated 2D membrane model replaces the internal forces of the beam elements in the predefined region where the localized deformations take place. An iterative coupling technique is used to perform this replacement. Comparisons with full membrane analysis are provided in order to illustrate the accuracy and efficiency of the method developed herein. In this study, the membrane formulation is able to capture the elasto-plastic material behaviour based on the von Misses yield criterion and the associated flow rule for plane stress. The Newmark time integration method is adopted for the step-by-step dynamic analysis.

Multi-scale Local Difference Directional Number Pattern for Group-housed Pigs Recognition

  • Huang, Weijia;Zhu, Weixing;Zhang, Zhengyan;Guo, Yizheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권9호
    • /
    • pp.3186-3203
    • /
    • 2021
  • In this paper, a multi-scale local difference directional number (MLDDN) pattern is proposed for pig identification. Firstly, the color images of individual pig are converted into grey images by the most significant bits (MSB) quantization, which makes the grey values have better discrimination. Then, Gabor amplitude and phase responses on different scales are obtained by convoluting the grey images with Gabor masks. Next, by calculating the main difference of local edge directions instead of traditionally edge information, the directional numbers of Gabor amplitude and phase responses are encoded. Finally, the block histograms of the encoded images are concatenated on each scale, and the maximum pooling is adopted on different scales to avoid the high feature dimension. Experimental results on two pigsties show that MLDDN impressively outperforms the other widely used local descriptors.

지역 근처 차이를 이용한 텍스쳐 분류에 관한 연구 (Texture Classification Using Local Neighbor Differences)

  • 뮤잠멜;팽소호;박민욱;김덕환
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 춘계학술발표대회
    • /
    • pp.377-380
    • /
    • 2010
  • This paper proposes texture descriptor for texture classification called Local Neighbor Differences (LND). LND is a high discriminating texture descriptor and also robust to illumination changes. The proposed descriptor utilizes the sign of differences between surrounding pixels in a local neighborhood. The differences of those pixels are thresholded to form an 8-bit binary codeword. The decimal values of these 8-bit code words are computed and they are called LND values. A histogram of the resulting LND values is created and used as feature to describe the texture information of an image. Experimental results, with respect to texture classification accuracies using OUTEX_TC_00001 test suite has been performed. The results show that LND outperforms LBP method, with average classification accuracies of 92.3% whereas that of local binary patterns (LBP) is 90.7%.

특징의 효과적 병합에 의한 광고영상정보의 분류 기법 (A Grouping Method of Photographic Advertisement Information Based on the Efficient Combination of Features)

  • 정재경;전병우
    • 전자공학회논문지CI
    • /
    • 제48권2호
    • /
    • pp.66-77
    • /
    • 2011
  • 본 논문은 특징을 효과적으로 병합하여 계층적 색인구조를 적용하는 광고영상의 분류기법에 대한 체계적 방법을 제안한다. 본 방법은 온라인 및 오프라인 상의 광고 영상 정보 관리를 위한 효과적인 응용으로써, 특별히 광고 영상정보의 추적을 위한 전처리 과정을 제공한다. 이를 위하여 전체 영상에 대한 일반적 정보를 포함하는 전역특징과 영상의 지역적 특성에 기반하는 지역특징을 고려한다. 고안된 지역특징은 영상 회전, 스케일링, 잡음추가, 빛의 변화에 불변하여 아핀(Affine) 변환에 의한 화면 차 영상에 대하여도 신뢰성 높은 매칭 도를 얻을 수 있고 동질의 영상 쌍을 검색하는데 있어서도 높은 정확도를 보여준다. 제안 방법은 우선 전역특징으로 전체영상자료에서 다수의 영상 쌍들로 개략적인 영상 군을 구성한 후에, 영상군안에서 지역특징에 의한 동질 영상 쌍들 즉 정밀한 영상 군들로 분리하는 정밀 매칭을 실행한다. 실행시간을 단축하기 위해 전형적인 클러스터링으로 전역특성이 유사한 영상들끼리 그룹화 함으로서 지역특징에 의한 동질 영상 쌍 간 과도한 매칭 시간의 문제점을 극복한다.

필기의 구조적 표현에 의한 온라인 자동 서명 검증 기법 (A Technique for On-line Automatic Signature Verification based on a Structural Representation)

  • 김성훈;장문익;김재희
    • 한국정보처리학회논문지
    • /
    • 제5권11호
    • /
    • pp.2884-2896
    • /
    • 1998
  • 온라인 서명검증을 위해서는 서명의 국부적인 형태가 중요한 판단 근거가 된다. 함수적 접근이나 매개변수적 접근과 같은 지금까지의 접근방법은 서명을 시간에 대한 함수로 나타내거나, 특징집합으로 표현함으로써, 서명의 국부적인 모양을 무시한 채로 서명검증에서 유용한 요소로 사용될 수 있는 국부적인 모양에서의 다양한 특징, 국부적인 모양의 변화, 형태의 복잡성 등을 사용하지 않았다. 이 논문에서는 서명을 구성 형태에 근거한 구조적인 표현 방법으로 나타내어 서명의 국부적인 모양의 분석과 중요한 부분에 대한 선택적인 사용이 가능한 새로운 접근방식의 서명 검증 기법을 제시하였다. 즉, 서명의 구조적 표현에 근거하여 국부적 가중치 적용방법과 진위판단을 위한 임계치의 개인별 차등화 방법을 고안하였고, 이에 대한 실험결과를 분석하였다.

  • PDF

Face Recognition Robust to Local Distortion Using Modified ICA Basis Image

  • Kim Jong-Sun;Yi June-Ho
    • 한국정보보호학회:학술대회논문집
    • /
    • 한국정보보호학회 2006년도 하계학술대회
    • /
    • pp.251-257
    • /
    • 2006
  • The performance of face recognition methods using subspace projection is directly related to the characteristics of their basis images, especially in the cases of local distortion or partial occlusion. In order for a subspace projection method to be robust to local distortion and partial occlusion, the basis images generated by the method should exhibit a part-based local representation. We propose an effective part-based local representation method named locally salient ICA (LS-ICA) method for face recognition that is robust to local distortion and partial occlusion. The LS-ICA method only employs locally salient information from important facial parts in order to maximize the benefit of applying the idea of 'recognition by parts.' It creates part-based local basis images by imposing additional localization constraint in the process of computing ICA architecture I basis images. We have contrasted the LS-ICA method with other part-based representations such as LNMF (Localized Non-negative Matrix Factorization)and LFA (Local Feature Analysis). Experimental results show that the LS-ICA method performs better than PCA, ICA architecture I, ICA architecture II, LFA, and LNMF methods, especially in the cases of partial occlusions and local distortion

  • PDF

SIFT 특징을 이용하여 중첩상황에 강인한 AAM 기반 얼굴 추적 (Robust AAM-based Face Tracking with Occlusion Using SIFT Features)

  • 엄성은;장준수
    • 정보처리학회논문지B
    • /
    • 제17B권5호
    • /
    • pp.355-362
    • /
    • 2010
  • 얼굴추적은 3차원 공간상에서 머리(head)와 안면(face)의 움직임을 추정하는 기술로, 얼굴 표정 감정인식과 같은 상위 분석단계의 중요한 기반기술이다. 본 논문에서는 AAM 기반의 얼굴추적 알고리즘을 제안한다. AAM은 변형되는 대상을 분할하고 추적하는데 광범위하게 적용되고 있다. 그러나 여전히 여러 가지 해결해야할 제약사항들이 있다. 특히 자체중첩(self-occlusion)과 부분적인 중첩, 그리고 일시적으로 완전히 가려지는 완전중첩 상황에서 보통 국부해에 수렴(local convergence)하거나 발산하기 쉽다. 본 논문에서는 이러한 중첩상황에 대한 AAM의 강인성을 향상시키기 위해서 SIFT 특징을 이용하고 있다. SIFT는 일부 영상의 특징점으로 안정적인 추적이 가능하기 때문에 자체와 부분중첩에 효과적이며, 완전중첩의 상황에도 SIFT의 전역적인 매칭성능으로 별도의 재초기화 없이 연속적인 추적이 가능하다. 또한 추적과정에서 큰 자세변화에 따른 움직임을 효과적으로 추정하기 위해서 다시점(multi-view) 얼굴영상의 SIFT 특징을 온라인으로 등록하여 활용하고 있다. 제안한 알고리즘의 이러한 강인성은 위 세 가지 중첩상황에 대해서 기존 알고리즘들과의 비교실험을 통해서 보여준다.

특징 공간상에서 의 확률적 해석에 기반한 부분 인식 기법에 관한 연구 (A partially occluded object recognition technique using a probabilistic analysis in the feature space)

  • 박보건;이경무;이상욱;이진학
    • 한국통신학회논문지
    • /
    • 제26권11A호
    • /
    • pp.1946-1956
    • /
    • 2001
  • 본 논문에서는 관계 벡터 공간상의 특징 대응에 관한 확률적 해석에 기반한 새로운 부분 인식 기법을 제안한다. 효과적인 인식을 위해 물체를 관계 속성 그래프(Attributed Relational Graph; ARG)와 관계 벡터 공간들의 집합으로 표현한다. 또한 잡음이나 특징 소실로 인한 왜곡을 관계 벡터 공간에서의 관계 벡터 분포에 대한 왜곡으로 확률적으로 모델링한다. 제안하는 부분 인식 기법은 두 단계로 이루어진다. 우선 지역적인 특징(local feature)과 구조적인 일관성(structural consistency)을 사용하여 후보집합을 추출한다. 이렇게 추출된 후보집합 각각에 대해 관계 벡터 공간상에서의 에러 분석과 반복적인 voting 알고리즘을 통해 특징 소실을 검출한다. 실제 영상에 대한 실험 결과를 통해 제안한 알고리즘이 잡음이나 가리어짐이 심한 경우에도 강건한 성능을 보임을 알 수 있으며, 릴렉세이션(relaxation) 기법과 수행 시간 비교 분석을 통해 계산량 측면에서의 성능 향상을 확인할 수 있다.

  • PDF

Multiclass Support Vector Machines with SCAD

  • Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • 제19권5호
    • /
    • pp.655-662
    • /
    • 2012
  • Classification is an important research field in pattern recognition with high-dimensional predictors. The support vector machine(SVM) is a penalized feature selector and classifier. It is based on the hinge loss function, the non-convex penalty function, and the smoothly clipped absolute deviation(SCAD) suggested by Fan and Li (2001). We developed the algorithm for the multiclass SVM with the SCAD penalty function using the local quadratic approximation. For multiclass problems we compared the performance of the SVM with the $L_1$, $L_2$ penalty functions and the developed method.

방향 정보를 이용한 지문 영상의 품질 측정 (Quality measures of Fingerprint images using the orientation)

  • 이상훈;임덕선;김재희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.1867-1870
    • /
    • 2003
  • Since degraded region of input image can cause false minutiae which lead to decrease identification performance, use minutiae belong to only good quality to ensure true minutiae. This paper suggests image quality measuring method with respect to local and global orientation of ridges. In order to verify a suggested method, PDFs of quality indices derived by local and global feature are computed and then, classifying each image block using Bayesian decision theory.

  • PDF