• 제목/요약/키워드: local feature

검색결과 939건 처리시간 0.02초

iOS 플랫폼에서 Active Shape Model 개선을 통한 얼굴 특징 검출 (Improvement of Active Shape Model for Detecting Face Features in iOS Platform)

  • 이용환;김흥준
    • 반도체디스플레이기술학회지
    • /
    • 제15권2호
    • /
    • pp.61-65
    • /
    • 2016
  • Facial feature detection is a fundamental function in the field of computer vision such as security, bio-metrics, 3D modeling, and face recognition. There are many algorithms for the function, active shape model is one of the most popular local texture models. This paper addresses issues related to face detection, and implements an efficient extraction algorithm for extracting the facial feature points to use on iOS platform. In this paper, we extend the original ASM algorithm to improve its performance by four modifications. First, to detect a face and to initialize the shape model, we apply a face detection API provided from iOS CoreImage framework. Second, we construct a weighted local structure model for landmarks to utilize the edge points of the face contour. Third, we build a modified model definition and fitting more landmarks than the classical ASM. And last, we extend and build two-dimensional profile model for detecting faces within input images. The proposed algorithm is evaluated on experimental test set containing over 500 face images, and found to successfully extract facial feature points, clearly outperforming the original ASM.

Writer verification using feature selection based on genetic algorithm: A case study on handwritten Bangla dataset

  • Jaya Paul;Kalpita Dutta;Anasua Sarkar;Kaushik Roy;Nibaran Das
    • ETRI Journal
    • /
    • 제46권4호
    • /
    • pp.648-659
    • /
    • 2024
  • Author verification is challenging because of the diversity in writing styles. We propose an enhanced handwriting verification method that combines handcrafted and automatically extracted features. The method uses a genetic algorithm to reduce the dimensionality of the feature set. We consider offline Bangla handwriting content and evaluate the proposed method using handcrafted features with a simple logistic regression, radial basis function network, and sequential minimal optimization as well as automatically extracted features using a convolutional neural network. The handcrafted features outperform the automatically extracted ones, achieving an average verification accuracy of 94.54% for 100 writers. The handcrafted features include Radon transform, histogram of oriented gradients, local phase quantization, and local binary patterns from interwriter and intrawriter content. The genetic algorithm reduces the feature dimensionality and selects salient features using a support vector machine. The top five experimental results are obtained from the optimal feature set selected using a consensus strategy. Comparisons with other methods and features confirm the satisfactory results.

경계표현법을 기본으로 한 특징형상 모델러의 개발 (Development of Feature Based Modeller Using Boundary Representation)

  • 홍상훈;서효원;이상조
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2446-2456
    • /
    • 1993
  • By virtue of progress of computer science, CAD/CAM technology has been developed greatly in each area. But the problems in the integration of CAD/CAM are not yet solved completely. The reason is that the exchange of data between CAD and CAM is difficult because the domains of design and manufacturing are different in nature. To solve this problem, a feature based modeller is developed in this study, which makes it possible to communicate between design and manufacturing through features. The modeller has feature, the concept of semi-bounded plane is introduced, and implemented as a B-rep sheet model using half-edge data structure. The features are then created on a part by local modification of the boundary on a part based on feature template information. This approach generalizes the modelling of features in a geometry model.

특징형상 인식을 통한 창성적 자동 공정계획 수립 - 복합특징형상 분류를 중심을 - (Generative Process Planning through Feature Recognition)

  • 이현찬;이재현
    • 한국CDE학회논문집
    • /
    • 제3권4호
    • /
    • pp.274-282
    • /
    • 1998
  • A feature is a local shape of a product directly related to the manufacturing process. The feature plays a role of the bridge connecting CAD and CAM. In the process planning for he CAM, information on manufacturing is required. To get the a manufacturing information from CAD dat, we need to recognize features. Once features are recognized, they are used as an input for the process planning. In this paper, we thoroughly investigate the composite features, which are generated by interacting simple features. The simple features in the composite feature usually have precedence relation in terms of process sequence. Based on the reason for the precedence relation, we classify the composite features for the process planning. In addition to the precedence relation, approach direction is used as an input for the process planning. In the process planning, the number of set-up orientations are minimized whole process sequence for the features are generated. We propose a process planning algorithm based on the topological sort and breadth-first search of graphs. The algorithn is verified using sample products.

  • PDF

Content-based Image Retrieval Using Texture Features Extracted from Local Energy and Local Correlation of Gabor Transformed Images

  • Bu, Hee-Hyung;Kim, Nam-Chul;Lee, Bae-Ho;Kim, Sung-Ho
    • Journal of Information Processing Systems
    • /
    • 제13권5호
    • /
    • pp.1372-1381
    • /
    • 2017
  • In this paper, a texture feature extraction method using local energy and local correlation of Gabor transformed images is proposed and applied to an image retrieval system. The Gabor wavelet is known to be similar to the response of the human visual system. The outputs of the Gabor transformation are robust to variants of object size and illumination. Due to such advantages, it has been actively studied in various fields such as image retrieval, classification, analysis, etc. In this paper, in order to fully exploit the superior aspects of Gabor wavelet, local energy and local correlation features are extracted from Gabor transformed images and then applied to an image retrieval system. Some experiments are conducted to compare the performance of the proposed method with those of the conventional Gabor method and the popular rotation-invariant uniform local binary pattern (RULBP) method in terms of precision vs recall. The Mahalanobis distance is used to measure the similarity between a query image and a database (DB) image. Experimental results for Corel DB and VisTex DB show that the proposed method is superior to the conventional Gabor method. The proposed method also yields precision and recall 6.58% and 3.66% higher on average in Corel DB, respectively, and 4.87% and 3.37% higher on average in VisTex DB, respectively, than the popular RULBP method.

선택적 볼륨분해를 이용한 정적 CAD 모델의 함몰특징형상 수정 (Editing Depression Features in Static CAD Models Using Selective Volume Decomposition)

  • 우윤환;강상욱
    • 한국CDE학회논문집
    • /
    • 제16권3호
    • /
    • pp.178-186
    • /
    • 2011
  • Static CAD models are the CAD models that do not have feature information and modeling history. These static models are generated by translating CAD models in a specific CAD system into neutral formats such as STEP and IGES. When a CAD model is translated into a neutral format, its precious feature information such as feature parameters and modeling history is lost. Once the feature information is lost, the advantage of feature based modeling is not valid any longer, and modification for the model is purely dependent on geometric and topological manipulations. However, the capabilities of the existing methods to modify static CAD models are limited, Direct modification methods such as tweaking can only handle the modifications that do not involve topological changes. There was also an approach to modify static CAD model by using volume decomposition. However, this approach was also limited to modifications of protrusion features. To address this problem, we extend the volume decomposition approach to handle not only protrusion features but also depression features in a static CAD model. This method first generates the model that contains the volume of depression feature using the bounding box of a static CAD model. The difference between the model and the bounding box is selectively decomposed into so called the feature volume and the base volume. A modification of depression feature is achieved by manipulating the feature volume of the static CAD model.

계층적 특징형상 정보에 기반한 부품 유사성 평가 방법: Part 2 - 절삭가공 특징형상 분할방식 이용 (Part Similarity Assessment Method Based on Hierarchical Feature Decomposition: Part 2 - Using Negative Feature Decomposition)

  • 김용세;강병구;정용희
    • 한국CDE학회논문집
    • /
    • 제9권1호
    • /
    • pp.51-61
    • /
    • 2004
  • Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes.. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the second one of the two companion papers, describes the similarity assessment method using NFD.

계층적 특징형상 정보에 기반한 부품 유사성 평가 방법: Part 1 - 볼록입체 분할방식 및 특징형상 분할방식 이용 (Part Similarity Assessment Method Based on Hierarchical Feature Decomposition: Part 1 - Using Convex Decomposition and Form Feature Decomposition)

  • 김용세;강병구;정용희
    • 한국CDE학회논문집
    • /
    • 제9권1호
    • /
    • pp.44-50
    • /
    • 2004
  • Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the first one of the two companion papers, describes the similarity assessment methods using convex decomposition and FFD.

MPEG 비디오의 통계적 특성을 이용한 검색 시스템 (Retrieval System Adopting Statistical Feature of MPEG Video)

  • 유영달;강대성;김대진
    • 전자공학회논문지CI
    • /
    • 제38권5호
    • /
    • pp.58-64
    • /
    • 2001
  • 현재 많은 정보들이 비디오 데이터로 전송 또는 저장되고 있으며 고성능 PC의 보급과 internet과 같은 통신망의 대중화로 이런 비디오 데이터는 급속도로 증가하고 있다. 본 논문에서는 이런 비디오 데이터의 검색을 위하여 비디오 스트립을 분석하여 shot을 찾아내고 이들 중 key frame을 찾는 방법에 대하여 연구하고 이로서 사용자의 질의에 부합하는 비디오를 검색한다. 본 논문에서는 shot 경계 검출을 위해 객체의 움직임에 강인하면서 shot 내에서의 칼라의 변화에 둔감한 새로운 feature를 제안하고, shot frame에서 구한 각 feature들의 통계적 특성을 이용하여 스트립의 특징에 따라 weight를 부가하여 구해진 characterizing value의 시간 변화량을 구한다. 구해진 변화량의 local maxima와 local minima는 비디오 스트림에서 각각 가장 특정적인 frame과 평균적인 frame을 나타낸다. 이 순간의 short frame을 구함으로서 효과적이고 빠른 시간 내에 key frame을 추출한다. 추출되어진 key frame에 대하여 원 영상을 복원한 후, 색인을 위하여 다수의 parameter를 구하고, 사용자가 질의한 영상에 대해서 이들 parameter를 구하여 key frame들과 가장 유사한 대표영상들을 검색한다. 실험결과 일반적인 방법보다 더 나은 결과를 보였고, 높은 검색율을 보였다.

  • PDF

유사변환에 불변인 국부적 특징과 광역적 특징 선택에 의한 자동 표적인식 (Automatic Target Recognition by selecting similarity-transform-invariant local and global features)

  • 선선귀;박현욱
    • 대한전자공학회논문지SP
    • /
    • 제39권4호
    • /
    • pp.370-380
    • /
    • 2002
  • 전방 관측 적외선 영상에서 가려짐이 없거나 가려짐이 있는 군용차량을 인식할 수 있는 자동 표적인식 알고리즘을 제안한다. 표적을 배경으로부터 분리한 후에 광역적인 형상 특징을 찾기 위해 표적의 경계선에 대해 물체의 중심을 기준으로 방사함수 (radial function)를 정의한다. 또한, 형상 정보가 집중되어 있는 표적의 윗 부분으로부터 국부적인 형상 특징을 찾기 위해 두 개의 특징점과 경계선으로부터 거리함수를 정의한다. 두 개의 함수와 경계선으로부터 4개의 광역적 형상 특징과 4개의 국부적 형상 특징을 제안한다. 이 특징들은 병진, 회전 그리고 크기변화에 대해 기존의 특징 벡터들 보다 좋은 불변성을 가진다. 이 특징들을 이용하여 가려짐이 있는 표적과 가려짐이 없는 표적을 구분하여 인식하기 위한 새로운 분류 방식을 제안한다. 실험을 통해 제안한 특징들의 불변성과 인식 성능을 기존의 특징벡터들과 비교하여 제안한 표적 인식 알고리즘의 우수성을 입증한다.