• Title/Summary/Keyword: local damage

Search Result 1,096, Processing Time 0.028 seconds

A vibration based acoustic wave propagation technique for assessment of crack and corrosion induced damage in concrete structures

  • Kundu, Rahul Dev;Sasmal, Saptarshi
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.599-610
    • /
    • 2021
  • Early detection of small concrete crack or reinforcement corrosion is necessary for Structural Health Monitoring (SHM). Global vibration based methods are advantageous over local methods because of simple equipment installation and cost efficiency. Among vibration based techniques, FRF based methods are preferred over modal based methods. In this study, a new coupled method using frequency response function (FRF) and proper orthogonal modes (POM) is proposed by using the dynamic characteristic of a damaged beam. For the numerical simulation, wave finite element (WFE), coupled with traditional finite element (FE) method is used for effectively incorporating the damage related information and faster computation. As reported in literature, hybrid combination of wave function based wave finite element method and shape function based finite element method can addresses the mid frequency modelling difficulty as it utilises the advantages of both the methods. It also reduces the dynamic matrix dimension. The algorithms are implemented on a three-dimensional reinforced concrete beam. Damage is modelled and studied for two scenarios, i.e., crack in concrete and rebar corrosion. Single and multiple damage locations with different damage length are also considered. The proposed methodology is found to be very sensitive to both single- and multiple- damage while being computationally efficient at the same time. It is observed that the detection of damage due to corrosion is more challenging than that of concrete crack. The similarity index obtained from the damage parameters shows that it can be a very effective indicator for appropriately indicating initiation of damage in concrete structure in the form of spread corrosion or invisible crack.

Fatigue Damage of Reinforced Concrete Bridge Columns Subjected to Cyclic Load (반복하중을 받는 철근콘크리트 교각의 피로손상)

  • 김태훈;김운학;신현목
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.99-104
    • /
    • 2002
  • This paper presents an analytical prediction of the fatigue damage of reinforced concrete bridge columns subjected to cyclic load. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected, local discontinuity in deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel and concrete. The proposed numerical method for fatigue damage of reinforced concrete bridge columns subjected to cyclic load is verified by comparison with reliable experimental results.

  • PDF

3D TCAD Analysis of Hot-Carrier Degradation Mechanisms in 10 nm Node Input/Output Bulk FinFETs

  • Son, Dokyun;Jeon, Sangbin;Kang, Myounggon;Shin, Hyungcheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.191-197
    • /
    • 2016
  • In this paper, we investigated the hotcarrier injection (HCI) mechanism, one of the most important reliability issues, in 10 nm node Input/Output (I/O) bulk FinFET. The FinFET has much intensive HCI damage in Fin-bottom region, while the HCI damage for planar device has relatively uniform behavior. The local damage behavior in the FinFET is due to the geometrical characteristics. Also, the HCI is significantly affected by doping profile, which could change the worst HCI bias condition. This work suggested comprehensive understanding of HCI mechanisms and the guideline of doping profile in 10 nm node I/O bulk FinFET.

Interlaminar stress behavior of laminated composite plates under Low velocity Impact (저속충격을 받는 적층복합재료 평판의 미시구조를 고려한 interlaminar stress 거동 연구)

  • Ji, Kuk-Hyun;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.249-252
    • /
    • 2005
  • Prediction of damage caused by low-velocity impact in laminated composite plate is an important problem faced by designers using composites. Not only the inplane stresses but also the interlaminar normal and shear stresses playa role in estimating the damage caused. The work reported here is an effort in getting better predictions of damage in composite plate using DNS approach. In the DNS model, we discretize the composite plates through separate modeling of fiber and matrix for the local microscopic analysis. Through comparison with the homogenized model. In the view of microscopic mechanics with DNS model, interlaminar stress behaviors in the inside of composite materials is investigated and compared with the results of the homogenized model which has been used in the conventional approach of impact analysis.

  • PDF

FATIGUE DAMAGE PARAMETER OF SPOT WELDED JOINTS UNDER PROPORTIONAL LOADING

  • KANG H. T.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.285-291
    • /
    • 2005
  • In this paper, the author proposes a fatigue damage parameter of spot welded joints under proportional loading. The proposed fatigue damage parameter is developed based on von Mises' equivalent stress and local structural stress at the edge of spot weld nugget. The structural stress at the edges of the weld nugget in each sheet is calculated using the forces and moments that are determined by finite element analysis. A structural equivalent stress is then calculated by von Mises' equivalent stress equation. The structural equivalent stresses are correlated to experimental fatigue life of the spot welded joints. The proposed parameter is evaluated with fatigue test data of spot welds subjected to multi axial and tensile-shear loads. Sheppard's parameter and Rupp and co-workers' parameter are also evaluated with the same test data to compare with the author's parameter. This proposed parameter presents a better correlation with experimental fatigue data than those of Sheppard's and Rupp and co-workers' parameter. The proposed parameter should be very effective for durability calculations during the early design phase since coarsely meshed finite element models can be employed.

Effect of Skin Burn on the Skin and Liver (피부화상이 피부 및 간에 미치는 영향)

  • Nam, Chul-Hyun;Seo, Hyun-Gyu;Hwang, Tae-Yeun;Choi, Hyun-Lim;Lee, Dong-Ho
    • Journal of Korean Physical Therapy Science
    • /
    • v.8 no.2
    • /
    • pp.1091-1097
    • /
    • 2001
  • The main experiments was investigated the skin tissue damage changing for the skin bum having influence on the skin and the liver and also observed the radical liver weight, ALT in the serum, the fluctuating of AST for the skin bum causing to the liver damage. Anatomically the edema formation of skin after thermal injury was showed, and skin bum increased liver weight (% of body weight, p<0.05) and the activity of serum aniline aminotrasferase (p<0.05), and also histologically induced wes of epidermal layer, protein degeneration of connective tissue, local hemorrhage and degeneration of glandular epithelium in the skin tissue. Liver tissue showed the evidences of postbum damage, they were sinusoidal dilatation, cell swelling, infiltration of inflammatory cells.

  • PDF

FATIGUE TEST TO THE BLADES AXLE OF ROTARY TILLER

  • Mao, Hanping;Chen, Cuiying
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.291-296
    • /
    • 1993
  • Taking a bledes axle of rotary tiller as a example, this paper discusses influences of four loading essential factors, which are strengthened amplitude, cycle times, loading sequence and loading frequency. in fatigue life. Determination principles of above four factors and monitoring methods of fatigue damage by local strain are dealt with. The actual field testing check of farm machinery is rapidly simulated by laboratory program fatigue test can shorten the period of development and improvement of a product. In the time of in-door simulation test, damage monitoring and four loading essential factors, which are strengthened amplitude , cycle times, loading sequence and loading frequency, have to be dealt with . If these problems are solved successfully, it is possible to accelerated test speed, reduce costs and manhours, and raise accuracy of test result. However strengthening method, loading pattern and influence of loading frequency on test result have not so far been discu sed systematically, damage monitoring is even more a difficult problem. Authors have studied above problems with the object of blades axle of rotary tiller.

  • PDF

Analysis of Offshore Tubulars Subjected to Collision Impacts Using a Spring-Beam Model (스프링-보 모형을 이용한 해양구조물 원통부재의 충돌 해석)

  • 조상래;권종식
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.22-35
    • /
    • 1995
  • A simplified numerical procedure have proposed to trace the dynamic behaviour of offshore tubulars subjected to lateral collision impacts. The local denting and overall bending deformation of the struck tubular are represented by a non-linear spring and an elastic visco-plastic beam respectively. In this method a temporal finite difference method and a spacial finite element method are employed. Using this method various boundary conditions are able to considered and their effects on the extent of damage can be quantified. The extent of damage due to collision can be obtained as results of the dynamic analysis. The predictions using the proposed method have been correlated with existing test results and then the reliability of the procedure has been substantiated. The characteristics of the dynamic response of tubulars under lateral impacts are compared for simply supported roller and fixed end conditions and their effects on the extent of damage are specfied.

  • PDF

A Study of Fatigue Damage Model using Neural Networks in 2024-T3 Aluminium Alloy (신경회로망을 이용한 Al 2024-T3 합금의 피로손상모델에 관한 연구)

  • 홍순혁;조석수;주원식
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.14-21
    • /
    • 2001
  • To estimate crack growth rate and cycle ratio uniquely, many investigators have developed various kinds of mechanical parameters and theories. But, thes have produced local solution space through single parameter. Neural Networks can perform patten classification using several input and output parameters. Fatigue damage model by neural networks was used to recognize the relation between da/dN/N/N(sub)f, and half-value breadth ratio B/Bo, fractal dimension D(sub)f, and fracture mechanical parameters in 2024-T3 aluminium alloy. Learned neural networks has ability to predict both crack growth rate da/dN and cycly ratio /N/N(sub)f within engineering estimated mean error(5%).

  • PDF

A parametric study based on spectral fatigue analysis for 170k LNGC

  • Park, Tae-Yoon;Jang, Chang-Doo;Suh, Yong-Suk;Kim, Bong-Jae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.2
    • /
    • pp.116-121
    • /
    • 2011
  • The Spectral Fatigue Analysis is representative fatigue life assessment method for vessels. This Analysis is performed generally for the whole vessel and many assessment sites. The spectral fatigue analysis is performed through the process of hydrodynamic response analysis, global structural analysis, local structural analysis and calculation of fatigue damage. In these processes, fatigue damage is affected by many variables. The representative variables are S-N curve data, wave scatter data, wave spectrum, bandwidth effect and etc. In this paper, the effects of these variables to the fatigue damage are analyzed through the spectral fatigue analysis for 170k LNGC.