• 제목/요약/키워드: local damage

검색결과 1,096건 처리시간 0.033초

Nondestructive damage evaluation of deep beams

  • Dincal, Selcuk;Stubbs, Norris
    • Structural Monitoring and Maintenance
    • /
    • 제4권3호
    • /
    • pp.269-299
    • /
    • 2017
  • This paper presents a Level III damage evaluation methodology, which simultaneously, identifies the location, the extent, and the severity of stiffness damage in deep beams. Deep beams are structural elements with relatively high aspect (depth-to-length) ratios whose response are no longer based on the simplified Euler-Bernoulli theory. The proposed methodology is developed on the bases of the force-displacement relations of the Timoshenko beam theory and the concept of invariant stress resultants, which states that the net internal force existing at any cross-section of the beam is not affected by the inflicted damage, provided that the external loadings in the undamaged and damaged beams are identical. Irrespective of the aspect ratios, local changes in both the flexural and the shear stiffnesses of beam-type structures may be detected using the approach presented in this paper.

진동신호기반 손상검색기법과 온도변화의 영향 (Temperature Effects on Vibration-Based Damage Detection Method)

  • 김정태;류연선;조현만;윤정방;이진학
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.608-613
    • /
    • 2003
  • In this paper, the variability of modal properties caused by temperature effects is assessed to adjust modal data used for frequency-based damage detection in plate-girder bridges. First, experiments on model plate-girder bridges are described. Next, the relationship between temperature and natural frequencies is assessed and a set of empirical frequency-correction formula are analyzed for the test structure. Finally, a frequency-eased method is used to locate and estimate severity of damage in the test structure using experimental modal data which are adjusted by the frequency-correction formula. Here, local damage in beam-type structures is detected by using measured frequencies and analytical mode shapes.

  • PDF

Finite element simulation of traditional and earthquake resistant brick masonry building under shock loading

  • Daniel, A. Joshua;Dubey, R.N.
    • Coupled systems mechanics
    • /
    • 제4권1호
    • /
    • pp.19-36
    • /
    • 2015
  • Modelling and analysis of a brick masonry building involves uncertainties like modelling assumptions and properties of local material. Therefore, it is necessary to perform a calibration to evaluate the dynamic properties of the structure. The response of the finite element model is improved by predicting the parameter by performing linear dynamic analysis on experimental data by comparing the acceleration. Further, a nonlinear dynamic analysis was also performed comparing the roof acceleration and damage pattern of the structure obtained analytically with the test findings. The roof accelerations obtained analytically were in good agreement with experimental roof accelerations. The damage patterns observed analytically after every shock were almost similar to that of experimental observations. Damage pattern with amplification in roof acceleration exhibit the potentiality of earthquake resistant measures in brick masonry models.

Development of Acceleration-PZT Impedance Hybrid Sensor Nodes Embedding Damage Identification Algorithm for PSC Girders

  • Park, Jae-Hyung;Lee, So-Young;Kim, Jeong-Tae
    • 한국해양공학회지
    • /
    • 제24권3호
    • /
    • pp.1-10
    • /
    • 2010
  • In this study, hybrid smart sensor nodes were developed for the autonomous structural health monitoring of prestressed concrete (PSC) girders. In order to achieve the objective, the following approaches were implemented. First, we show how two types of smart sensor nodes for the hybrid health monitoring were developed. One was an acceleration-based smart sensor node using an MEMS accelerometer to monitor the overall damage in concrete girders. The other was an impedance-based smart sensor node for monitoring the local damage in prestressing tendons. Second, a hybrid monitoring algorithm using these smart sensor nodes is proposed for the autonomous structural health monitoring of PSC girders. Finally, we show how the performance of the developed system was evaluated using a lab-scaled PSC girder model for which dynamic tests were performed on a series of prestress-loss cases and girder damage cases.

Damage detection in beams and plates using wavelet transforms

  • Rajasekaran, S.;Varghese, S.P.
    • Computers and Concrete
    • /
    • 제2권6호
    • /
    • pp.481-498
    • /
    • 2005
  • A wavelet based approach is proposed for structural damage detection in beams, plate and delamination of composite plates. Wavelet theory is applied here for crack identification of a beam element with a transverse on edge non-propagating open crack. Finite difference method was used for generating a general displacement equation for the cracked beam in the first example. In the second and third example, damage is detected from the deformed shape of a loaded simply supported plate applying the wavelet theory. Delamination in composite plate is identified using wavelet theory in the fourth example. The main concept used is the breaking down of the dynamic signal of a structural response into a series of local basis function called wavelets, so as to detect the special characteristics of the structure by scaling and transformation property of wavelets. In the light of the results obtained, limitations of the proposed method as well as suggestions for future work are presented. Results show great promise of wavelet approach for damage detection and structural health monitoring.

On the use of numerical models for validation of high frequency based damage detection methodologies

  • Aguirre, Diego A.;Montejo, Luis A.
    • Structural Monitoring and Maintenance
    • /
    • 제2권4호
    • /
    • pp.383-397
    • /
    • 2015
  • This article identifies and addresses current limitations on the use of numerical models for validation and/or calibration of damage detection methodologies that are based on the analysis of the high frequency response of the structure to identify the occurrence of abrupt anomalies. Distributed-plasticity non-linear fiber-based models in combination with experimental data from a full-scale reinforced concrete column test are used to point out current modeling techniques limitations. It was found that the numerical model was capable of reproducing the global and local response of the structure at a wide range of inelastic demands, including the occurrences of rebar ruptures. However, when abrupt sudden damage occurs, like rebar fracture, a high frequency pulse is detected in the accelerations recorded in the structure that the numerical model is incapable of reproducing. Since the occurrence of such pulse is fundamental on the detection of damage, it is proposed to add this effect to the simulated response before it is used for validation purposes.

Experimental study on identification of stiffness change in a concrete frame experiencing damage and retrofit

  • Zhou, X.T.;Ko, J.M.;Ni, Y.Q.
    • Structural Engineering and Mechanics
    • /
    • 제25권1호
    • /
    • pp.39-52
    • /
    • 2007
  • This paper describes an experimental study on structural health monitoring of a 1:3-scaled one-story concrete frame subjected to seismic damage and retrofit. The structure is tested on a shaking table by exerting successively enhanced earthquake excitations until severe damage, and then retrofitted using fiber-reinforced polymers (FRP). The modal properties of the tested structure at trifling, moderate, severe damage and strengthening stages are measured by subjecting it to a small-amplitude white-noise excitation after each earthquake attack. Making use of the measured global modal frequencies and a validated finite element model of the tested structure, a neural network method is developed to quantitatively identify the stiffness reduction due to damage and the stiffness enhancement due to strengthening. The identification results are compared with 'true' damage severities that are defined and determined based on visual inspection and local impact testing. It is shown that by the use of FRP retrofit, the stiffness of the severely damaged structure can be recovered to the level as in the trifling damage stage.

시민의 개인적 특성과 범죄두려움 관계 분석 (Analysis on the Relations of Citizen's Personal Character and Fear of Crime)

  • 성용은;유영재
    • 시큐리티연구
    • /
    • 제14호
    • /
    • pp.261-283
    • /
    • 2007
  • 범죄두려움의 원인을 설명하기 위한 최근의 연구들에서는 성, 연령, 경제수준, 범죄 피해경험 등의 미시적인 개인수준과 거시적인 지역수준과의 연계를 시도하는 연구에 관심과 노력을 보이고 있다. 하지만 이 연구에서는 이러한 지역수준의 특성에 대한 개인의 관심과 해석은 개인의 특성으로서 과거의 범죄피해경험, 범죄피해의 취약성 정도, 범죄관련 정보에 대한 관심에 따라 다를 수 있다고 보며, 미시적인 수준과 거시적인 수준의 연계를 시도하기에 앞서 개인적인 수준에서 개인의 특성과 범죄두려움의 관계에 대해서 실증적인 분석을 실시하였다. 따라서 이 연구의 목적은 범죄두려움이 과연 개인의 특성에 따라서 어떻게 느끼게 되며 또한 얼마나 많은 영향을 받게 되는지를 실증적으로 검증하는 데에 그 목적이 있다. 이 연구의 조사결과 우선 범죄피해경험이 집단간의 차이가 통계적으로 유의미한 인구통계학적 특성은 연령, 결혼상태, 최종학력, 거주하는 장소였으며, 범죄피해의 취약성 정도는 성별과 결혼상태, 범죄관련 정보에 대한 관심은 성별, 연령, 최종학력, 가족 수입, 거주장소 위치에 따라서 집단 간의 통계적으로 유의미한 차이가 있는 것으로 나타났다. 둘째, 개인적 특성 요인과 범죄두려움의 상관관계 분석을 실시한 결과 독립변수 세요인 모두 범죄두려움과 통계적으로 유의미한 상관관계를 나타내고 있었으며, 특히 범죄피해에 대한 취약성 요인이 범죄두려움과 가장 상관관계가 높게 나타났다. 마지막으로 개인의 특성으로서 범죄피해의 취약성, 범죄정보에 대한 관심, 범죄피해경험은 범죄두려움에 영향을 미쳤으며, 특히 이러한 개인적 특성 요인 중 자신이 범죄피해에 대해 취약하다고 생각 하는 범죄피해의 취약성이 범죄두려움에 가장 많은 영향을 미치는 요인으로 나타났다.

  • PDF

Modelling reinforced concrete beams under mixed shear-tension failure with different continuous FE approaches

  • Marzec, Ireneusz;Skarzynski, Lukasz;Bobinski, Jerzy;Tejchman, Jacek
    • Computers and Concrete
    • /
    • 제12권5호
    • /
    • pp.585-612
    • /
    • 2013
  • The paper presents quasi-static numerical simulations of the behaviour of short reinforced concrete beams without shear reinforcement under mixed shear-tension failure using the FEM and four various constitutive continuum models for concrete. First, an isotropic elasto-plastic model with a Drucker-Prager criterion defined in compression and with a Rankine criterion defined in tension was used. Next, an anisotropic smeared crack and isotropic damage model were applied. Finally, an elasto-plastic-damage model was used. To ensure mesh-independent FE results, to describe strain localization in concrete and to capture a deterministic size effect, all models were enhanced in a softening regime by a characteristic length of micro-structure by means of a non-local theory. Bond-slip between concrete and reinforcement was considered. The numerical results were directly compared with the corresponding laboratory tests performed by Walraven and Lehwalter (1994). The advantages and disadvantages of enhanced models to model the reinforced concrete behaviour were outlined.

내압을 받는 내/외부 국부 감육 곡관의 파손거동 (Damage Behavior of Elbow Pipe with Inner or Outer Local Wall Thinning under Internal Pressure)

  • 김수영;남기우
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.66-73
    • /
    • 2014
  • This study was considered to occur the local wall thinning at elbow which is flowing the steam and high-pressure water of high-temperature. The angle of elbow is ${\Theta}=45^{\circ}$ and $67.545^{\circ}$. The damage behaviors of inner or outer wall thinning elbow under internal pressure were calculated by FEA(finite element analysis). We compared the simulated results by FEA with experimental data. The FEA results are as follows: In the FEA results of three types of wall thinning ratio, the circumferential and longitudinal stresses show the similar values regardless of the angle of elbow, respectively. The circumferential strain was greater at elbow of small angle, but the longitudinal strain was nearly same. The FEM stress of outer wall thinning elbow was slightly higher than that of the inner wall thinning elbow, and strain was also slightly higher. In the experiments, the circumferential strain was increased with the increase in the internal pressure, and increased rapidly on about 0.2% of strain. The longitudinal strain was small. The strain at break was much smaller than 0.2%. In the relation between pressure and eroded ratio, the criteria that can be used safely under operating pressure and design pressure were obtained. The results of FEA were in relatively good agreement with those of the experiment.