• Title/Summary/Keyword: local compression

Search Result 405, Processing Time 0.021 seconds

A Study on Proper Location of Welding Defect in Three Point Bend Testing with MDPE Pipe

  • Lai, Huan Sheng;Yoon, Kee Bong;Kil, Seong Hee
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Welding defects affect the performance of welded pipe joints. In this study, a three point bend test of welded steel and medium density polyethylene (MDPE) pipe joints with defects of various defect locations and defect materials was studied using the finite element method. The defect was assumed to be located at 12 o'clock, 3 o'clock or 6 o'clock direction. The results showed that pipes failed more easily on the compression side due to stress or local buckling. The air defect was more dangerous than the steel defect if the defect was located in the compression side; otherwise, the defect material effect on the integrity of pipes was ignorable. It is argued that the integrity of pipes with defects in the compression side is weaker than that in other regions, and the defect should be located in the compression side or the 12 o'clock position in the three point bend test to maximize the effect of defect existence on the pipe structural integrity.

Elastic local buckling of thin-walled elliptical tubes containing elastic infill material

  • Bradford, M.A.;Roufegarinejad, A.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.143-156
    • /
    • 2008
  • Elliptical tubes may buckle in an elastic local buckling failure mode under uniform compression. Previous analyses of the local buckling of these members have assumed that the cross-section is hollow, but it is well-known that the local buckling capacity of thin-walled closed sections may be increased by filling them with a rigid medium such as concrete. In many applications, the medium many not necessarily be rigid, and the infill can be considered to be an elastic material which interacts with the buckling of the elliptical tube that surrounds it. This paper uses an energy-based technique to model the buckling of a thin-walled elliptical tube containing an elastic infill, which elucidates the physics of the buckling phenomenon from an engineering mechanics basis, in deference to a less generic finite element approach to the buckling problem. It makes use of the observation that the local buckling in an elliptical tube is localised with respect to the contour of the ellipse in its cross-section, with the localisation being at the region of lowest curvature. The formulation in the paper is algebraic and it leads to solutions that can be determined by implementing simple numerical solution techniques. A further extension of this formulation to a stiffness approach with multiple degrees of buckling freedom is described, and it is shown that using the simple one degree of freedom representation is sufficiently accurate for determining the elastic local buckling coefficient.

Local Buckling and Optimum Width-Thickness Ratios of I-Beams in Fire (화재시 I-형강 보의 국부좌굴과 최적 폭-두께비)

  • Kang, Moon Myung;Yun, Young Mook;Kang, Sung Duk;Plank, R.J.
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.491-498
    • /
    • 2005
  • This study involves the development of a computer program to analyze the local buckling stresses for the flange and the web of I-beams under compression at elevated temperatures, and the optimization algorithm to analyze the optimum width-thickness ratios which does not occur their local buckling prior to yield failure. The high-temperature stress-strain relationships of steel used in this study were based on EC3 (Eurocode3) Part1.2 (2000b). In this study, the local buckling stresses and the optimum width-thichness ratios were analyzed considering the influences of the yield stress, local buckling coefficients and width-thickness ratios of the flange and the web. Design examples show the applicability of the computer program developed in this study.

Postbuckling Analysis of laminated composite-stringer stiffened-Curved panels Loaded in Local compression. (국부 압축력을 받는 스트링거 보강 복합적층 만곡 판넬의 좌굴후 거동해석)

  • 김조권
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.25-32
    • /
    • 2000
  • In this paper, postbuckling behavior of laminated composite-stringer stiffened-curved panels loaded in local compression is analyzed using the finite element program developed. Postbuckling Analysis is performed in dividing the panel behavior into three basic parts. The eight node degenerated shell element is used in modelling both panel and stiffeners, and the updated Lagrangian description method based on the 2nd Piola-Kirchhoff stress tensor and the Green strain tensor is used for the nonlinear finite element formulation. The progressive failure analysis is adopted in order to grasp the failure characteristics. The postbuckling experiment of the laminated composite-stiffened-curved panel had been done to verify the finite element analysis. The buckling load and the postbuckling ultimate load are compared in parametric study.

  • PDF

Mechanical properties of reinforced-concrete rocking columns based on damage resistance

  • Zhu, Chunyang;Cui, Yanqing;Sun, Li;Du, Shiwei;Wang, Xinhui;Yu, Haochuan
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.737-747
    • /
    • 2021
  • The objective of seismic resilience is to maintain or rapidly restore the function of a building after an earthquake. An efficient tilt mechanism at the member level is crucial for the restoration of the main structure function; however, the damage resistance of the members should be the main focus. In this study, through a comparison with the classical Flamant theory of local loading in the elastic half-space, an elastomechanical solution for the axial-stress distribution of a reinforced-concrete (RC) rocking column was derived. Furthermore, assuming that the lateral displacement of the rocking column is determined by the contact surface rotation angle of the column end and bending and shear deformation of the column body, the load-lateral displacement mechanical model of the RC rocking column was established and validated through a comparison with finite-element simulation results. The axial-compression ratio and column-end strength were analyzed, and the results indicated that on the premise of column damage resistance, simply increasing the axial-compression ratio increases the lateral loading capacity of the column but is ineffective for improving the lateral-displacement capacity. The lateral loading and displacement of the column are significantly improved as the strength of the column end material increases. Therefore, it is feasible to improve the working performance of RC rocking columns via local reinforcement of the column end.

Axial behavior of RC column strengthened with SM-CFST

  • Jiang, Haibo;Li, Jiahang;Cheng, Quan;Xiao, Jie;Chen, Zhenkan
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.773-784
    • /
    • 2022
  • This paper aims to investigate the axial compressive behavior of reinforced concrete (RC) columns strengthened with self-compacting and micro-expanding (SM) concrete-filled steel tubes (SM-CFSTs). Nine specimens were tested in total under the local axial compression. The test parameters included steel tube thickness, filling concrete strength, filling concrete type and initial axial preloading. The test results demonstrated that the initial stiffness, ultimate bearing capacity and ductility of original RC columns were improved after being strengthened by SM-CFSTs. The ultimate bearing capacity of the SM-CFST strengthened RC columns was significantly enhanced with the increase of steel tube thickness. The initial stiffness and ultimate bearing capacity of the SM-CFST strengthened RC columns were slightly enhanced with the increase of filling concrete strength. However, the effect of filling concrete type and initial axial preloading of the SM-CFST strengthened RC columns were negligible. Three equations for predicting the ultimate bearing capacity of the SM-CFST strengthened RC columns were compared, and the modified equation based on Chinese code (GB 50936-2014) was more precise.

Research on axial bearing capacity of cold-formed thin-walled steel built-up column with 12-limb-section

  • Wentao Qiao;Yuhuan Wang;Ruifeng Li;Dong Wang;Haiying Zhang
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.437-450
    • /
    • 2023
  • A half open cross section built-up column, namely cold-formed thin-walled steel built-up column with 12-limbsection (CTSBC-12) is put forward. To deeply reveal the mechanical behaviors of CTSBC-12 under axial compression and put forward its calculation formula of axial bearing capacity, based on the previous axial compression experimental research, the finite element analysis (FEA) is conducted on 9 CTSBC-12 specimens, and then the variable parameter analysis is carried out. The results show the FEA is in good agreement with the experimental research, the ultimate bearing capacity error is within 10%. When the slenderness ratio is more than 96.54, the ultimate bearing capacity of CTSBC-12 decreases rapidly, and the failure mode changes from local buckling to global buckling. With the local buckling failure mode unchanged, the ultimate bearing capacity decreases gradually as the ratio of web height to thickness increases. Three methods are used for calculating the ultimate bearing capacity, the direct strength method of AISI S100-2007 gives result of ultimate axial load which is closest to the test and FEA results. But for simplicity and practicality, a simplified axial bearing capacity formula is proposed, which has better calculation accuracy with the slenderness ratio changing from 30 to 100.

Percutaneous Vertebroplasty in the Treatment of Vertebral Body Compression Fracture with Osteoporosis - Preliminary Report - (골다공증을 동반한 척추체 압박골절에 대한 경피적 척추 성형술 - 예비보고 -)

  • Lee, Sang-Gu;Yoo, Chan-Jong
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.5
    • /
    • pp.615-622
    • /
    • 2000
  • Objective : Percutaneous vertebroplasty is an effective and minimally invasive procedure consisting of the injection of a PMMA(polymethyl methacrylate) into the vertebral body compression fracture with osteoporosis. Matherials and Methods : Twenty-eight procedures were performed for vertebral body compression fractures with osteoporosis in 25 patients(22 women, 3 men). The mean age was 65.9 years old. The inclusion criteria for percutaneous vertebroplasty were 1) acute vertebral body compression fracture with osteoporosis, 2) expected high operative morbidity in old age, 3) no neurologic deficits, 4) no or minimal canal enchroachment, 5) patient refusal of invasive surgery. All patients underwent MR images before the procedure. Under local anesthesia, after the percutaneous needle puncture of the involved vertebra via a transpedicular approach and venography using the water soluble contrast material, PMMA injection was introduced into the fractured vertebral body. Results : The procedure was technically successful in all patients. All patients experienced excellent pain relief (complete pain relief ; 10, marked pain relief ; 14). One patient experienced marked pain relief, however, the patient died during the follow-up period due to stomach cancer. There were twelve paravertebral tissue leaks, twelve paravertebral venous plexus leaks, four epidural leaks and one intradiskal leak, but no clinically significant complications occurred in all patients. Conclusion : Percutaneous vertebraoplasty is a valuable procedure in the treatment of vertebral body compression fracture with osteoporosis, providing immediate pain relief and early mobilization. MRI is the most reliable diagnostic tool for identifying painful fractured vertebral body.

  • PDF

Ultimate Behavior of Compression Flange Stiffened by Shear Stud on Double Composite Steel Box Girder (이중합성 강박스거더에서 전단연결재에 의해 보강된 압축플랜지의 극한거동에 관한 연구)

  • Lee, Doo Sung;Lee, Sung Chul;Suh, Suk Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.457-463
    • /
    • 2008
  • The longitudinal stiffener performs its role to increase the local buckling strength by making simple support upon compression flange. In the recent researches, it is investigated that compression flange with point supports on certain arrangement reveals the same strength with longitudinal stiffeners. From this results, it is predictable that shear stud could perform the role of longitudinal stiffener if shear stud embedded in concrete satisfies the requirement to point-support under yield stress of the compression flange. In this study, the researches were performed to investigate the optimally required arrangement space of longitudinal point-support for which the shear stud replacing the longitudinal stiffeners and simultaneously determine the required numbers and space of shear stud for completely composite behavior between compression bottom flange and bottom concrete on the double composite girder system.

Low-Complexity Design of Quantizers for Distributed Systems

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.3
    • /
    • pp.142-147
    • /
    • 2018
  • We present a practical design algorithm for quantizers at nodes in distributed systems in which each local measurement is quantized without communication between nodes and transmitted to a fusion node that conducts estimation of the parameter of interest. The benefits of vector quantization (VQ) motivate us to incorporate the VQ strategy into our design and we propose a low-complexity design technique that seeks to assign vector codewords into sets such that each codeword in the sets should be closest to its associated local codeword. In doing so, we introduce new distance metrics to measure the distance between vector codewords and local ones and construct the sets of vector codewords at each node to minimize the average distance, resulting in an efficient and independent encoding of the vector codewords. Through extensive experiments, we show that the proposed algorithm can maintain comparable performance with a substantially reduced design complexity.