• Title/Summary/Keyword: loads (forces)

Search Result 688, Processing Time 0.021 seconds

Closed Form Expression of Cutting Forces and Tool Deflection in End Milling Using Fourier Series (푸리에 급수를 이용한 엔드밀링 절삭력 및 공구변형 표현)

  • Ryu, Shi-Hyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.76-83
    • /
    • 2006
  • Machining accuracy is closely related with tool deflection induced by cutting forces. In this research, cutting forces and tool deflection in end milling are expressed as a closed form of tool rotational angle and cutting conditions. The discrete cutting fores caused by periodic tool entry and exit are represented as a continuous function using the Fourier series expansion. Tool deflection is predicted by direct integration of the distributed loads on cutting edges. Cutting conditions, tool geometry, run-outs and the stiffness of tool clamping part are considered together far cutting forces and tool deflection estimation. Compared with numerical methods, the presented method has advantages in prediction time reduction and the effects of feeding and run-outs on cutting forces and tool deflection can be analyzed quantitatively. This research can be effectively used in real time machining error estimation and cutting condition selection for error minimization since the form accuracy is easily predicted from tool deflection curve.

A Study of Longitudinal Forces and Displacements in a Multi-Span Bridge Equipped with a CWR Track (장대레일이 설치된 교량에서의 축방향 변위 및 축력 변화 연구)

  • Lee, Joo-Heon;Huh, Young
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.442-449
    • /
    • 1999
  • Due to temperature variations, considerable longitudinal rail forces and displacements may develop in continuous welded rail(CWR) track on long-span bridges or viaducts. Excessive relative displacements between sleepers and ballast bed may disturb the stable position of the track in the ballast which results in a lower frictional resistance. Generally, these problems are solved by installing rail expansion devices. However the application of expansion devices in high-speed tracks on existing bridges, as a means to prevent excessive longitudinal displacements and forces, is not attractive method due to comfort, safety and maintenance aspects. An alternative and very effective solution is possibly the use of so-called zero longitudinal restraint(ZLR) fastenings over some length of the track. The calculations, carried out in this respect, show a considerable reduction of track displacements, track forces, and the relative sleeper/ballast displacements. This reduction depends on the length over which these fastenings are installed. In this paper calculations of the longitudinal displacments and forces in a CWR track and substructure resulting from thermal, mechanical and kinematical loads were carried out using the FEM analysis program LUSAS

  • PDF

Representation of cutting forces and tool deflection in end milling using Fourier series (엔드밀 가공에서 푸리에 급수를 이용한 절삭력 및 공구변형 표현)

  • Ryu S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.781-785
    • /
    • 2005
  • Cutting forces and tool deflection in end milling are represented as the closed form of tool rotational angle and cutting conditions. The discrete cutting forces caused by tool entry and exit are continued using the Fourier series expansion. Tool deflection is predicted by direct integration of the distributed loads on cutting edges. Cutting conditions, tool geometry, run-outs and the stiffness of tool clamping pan are considered for cutting forces and tool deflection estimation. Compared to numerical methods, the presented method has advantages in short prediction time and the effects of feeding and run-outs on cutting forces and tool deflection can be analyzed quantitatively. This research can be effectively used in real time machining error estimation and cutting condition selection for error minimization since the ferm accuracy is easily predicted by tool deflect ion curve.

  • PDF

Blast-load-induced interaction between adjacent multi-story buildings

  • Mahmoud, Sayed
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.17-29
    • /
    • 2019
  • The present study aims to present a comprehensive understanding of the performance of neighboring multi-story buildings with different dynamic characteristics under blast loads. Two different scenarios are simulated in terms of explosion locations with respect to both buildings. To investigate the effect of interaction between the neighboring buildings in terms of the induced responses, the separation gap is set to be sufficiently small to ensure collisions between stories. An adequately large separation gap is set between the buildings to explore responses without collisions under the applied blast loads. Several blast loads with different peak pressure intensities are employed to perform the dynamic analysis. The finite-element toolbox Computer Aided Learning of the Finite-Element Method (CALFEM) is used to develop a MATLAB code to perform the simulation analysis. The dynamic responses obtained in the scenarios considered herein are presented comparatively. It is found that the obtained stories' responses are governed mainly by the location and intensity of the applied blast loads, separation distances, and flexibility of the attacked structures. Moreover, explosions near a light and flexible building may lead to a significant decrease in blast resistance because explosions severely influence the dynamic responses of the building's stories.

A Computational Study on the Unsteady Lateral Loads in a Rocket Nozzle

  • Nagdewe, Suryakant;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.289-292
    • /
    • 2008
  • Highly over-expanded nozzle of the rocket engines will be excited by non-axial forces due to flow separation at sea level operations. Since rocket engines are designed to produce axial thrust to power the vehicle, non-axial static and/or dynamic forces are not desirable. Several engine failures were attributed to the side loads. Present work investigate the unsteady flow in an over-expanded rocket nozzle in order to estimate side load during a shutdown/starting. Numerical computations has been carried out with density based solver on multi-block structured grid. Present solver is explicit in time and unsteady time step is calculated using dual time step approach. AUSMDV is considered as a numerical scheme for the flux calculations. One equation Spalart-Allmaras turbulence model is selected. Results presented here is for two nozzle pressure ratio i.e. 100 and 20. At 100 NPR, restricted shock separation (RSS) pattern is observed while, 20 NPR shows free shock separation (FSS) pattern. Side load is observed during the transition of separation pattern at different NPR.

  • PDF

Three Dimensional Finite Element Analysis of Structures under Wind Loads (풍하중을 받는 구조물의 3차원 유한요소해석)

  • 김병완;김운학;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.26-33
    • /
    • 2001
  • This paper compares conventional beam analyses with exact three dimensional plate analyses through numerical examples with plates under wind loads in order to study the disadvantages of conventional simplified beam analyses of wind-loaded structures, Bending moments and principal stresses from beam analyses are good agreements with those from plate analyses but torsional moments are not. And it is possible to get result forces which are variant along width directions from plate analyses but not from beam analyses due to constant distributions of result forces along width directions. Therefore exact three dimensional plate analyses are required in the analyses of wind-loaded structures instead of conventional simplified beam analyses.

  • PDF

Mechanical Integrity Evaluation on the Degraded Cladding Tube of Spent Nuclear Fuel Under Axial and Bending Loads During Transportation

  • Lee, Seong-Ki;Lee, Dong-Hyo;Park, Joon-Kyoo;Kim, Jae-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.491-501
    • /
    • 2021
  • This paper aims to evaluate the mechanical integrity for Spent Nuclear Fuel (SNF) cladding under lateral loads during transportation. The evaluation process requires a conservative consideration of the degradation conditions of SNF cladding, especially the hydride effect, which reduces the ductility of the cladding. The dynamic forces occurring during the drop event are pinch force, axial force and bending moment. Among those forces, axial force and bending moment can induce transverse tearing of cladding. Our assessment of 14 × 14 PWR SNF was performed using finite element analysis considering SNF characteristics. We also considered the probabilistic procedures with a Monte Carlo method and a reliability evaluation. The evaluation results revealed that there was no probability of damage under normal conditions, and that under accident conditions the probability was small for transverse failure mode.

Structural Shape Optimization under Static Loads Transformed from Dynamic Loads (동하중으로부터 변환된 등가정하중을 통한 구조물의 형상최적설계)

  • Park, Ki-Jong;Lee, Jong-Nam;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1262-1269
    • /
    • 2003
  • In structural optimization, static loads are generally utilized although real external forces are dynamic. Dynamic loads have been considered in only small-scale problems. Recently, an algorithm for dynamic response optimization using transformation of dynamic loads into equivalent static loads has been proposed. The transformation is conducted to match the displacement fields from dynamic and static analyses. The algorithm can be applied to large-scale problems. However, the application has been limited to size optimization. The present study applies the algorithm to shape optimization. Because the number of degrees of freedom of finite element models is usually very large in shape optimization, it is difficult to conduct dynamic response optimization with the conventional methods that directly threat dynamic response in the time domain. The optimization process is carried out via interfacing an optimization system and an analysis system for structural dynamics. Various examples are solved to verify the algorithm. The results are compared to the results from static loads. It is found that the algorithm using static loads transformed from dynamic loads based on displacement is valid even for very large-scale problems such as shape optimization.

  • PDF

Structural Shape Optimization under Static Loads Transformed from Dynamic Loads (동하중으로부터 변환된 등가정하중을 통한 구조물의 형상최적설계)

  • Park, Ki-Jong;Lee, Jong-Nam;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1363-1370
    • /
    • 2003
  • In structural optimization, static loads are generally utilized although real external forces are dynamic. Dynamic loads have been considered in only small-scale problems. Recently, an algorithm for dynamic response optimization using transformation of dynamic loads into equivalent static loads has been proposed. The transformation is conducted to match the displacement fields from dynamic and static analyses. The algorithm can be applied to large-scale problems. However, the application has been limited to size optimization. The present study applies the algorithm to shape optimization. Because the number of degrees of freedom of finite element models is usually very large in shape optimization, it is difficult to conduct dynamic response optimization with the conventional methods that directly threat dynamic response in the time domain. The optimization process is carried out via interfacing an optimization system and an analysis system for structural dynamics. Various examples are solved to verify the algorithm. The results are compared to the results from static loads. It is found that the algorithm using static loads transformed from dynamic loads based on displacement is valid even for very large-scale problems such as shape optimization.

Motion Analysis of Two Point Moored Oil Tanker (2점 계류된 선박에 대한 운동 해석)

  • Lee, Ho-Young;Lim, Choon-Gyu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.232-236
    • /
    • 2003
  • The anchor is laid on seabed and the main engine is worked to against incident environmental loads in typoon. As the main engine is broken down in the storm, the anchor chain is cutted and the vessel is drifted. Although a ship is moored by two point mooring lines to keep the her position, a ship is crashed into a rock because of typoon and the accident of oil spilling may be occured. In this paper, we studied the position-keeping of a ship which is analyized based on the slow motion maneuvering equations considering wave, current and wind. The direct integration method is employed to estimate wave loads. The current forces are calculated by using mathematical of MMG. The two point mooring forces are quasisatatically evaluated by using the catenary equation. The coefficeints of wind forces are modeled from Isherwood’s emperical data and the variation of wind speed is estimated by wind spectrum. The nonlinear motions of a two point moored ship are simulated considering wave, current, wind load in time domain.

  • PDF