• Title/Summary/Keyword: loading transport analysis

Search Result 90, Processing Time 0.023 seconds

A Study on the Economical Feasibility Analysis For Development of Dual Mode Trailer System

  • Kim, Kwang-Hee
    • Journal of Navigation and Port Research
    • /
    • v.34 no.2
    • /
    • pp.137-144
    • /
    • 2010
  • In light of the growing traffic congestion problem and congestion cost, the container transport by railway has to be increased. The freight transport by railway can have decided advantages over trucks in terms of energy efficiency, emissions and cost for certain freight movements, just as transportation in the metropolitan region can have great advantages over driving truck. But the freight transport by truck should gain significant mobility benefits from a freight railway system. Thus, the DMT(Dual Mode Trailer) transport system which is coupled railway transport advantages with load transport advantages has been developed and used in the european countries. The DMT transport will therefore serve the areas required by transport organizers. The purpose of this paper is to estimate economical feasibility analysis for development of DMT transport system. Consequently, this study analyzed the characteristics of the DMT system. The horizontal load.unload system is being considered as an adoptable DMT system in consideration of the situation in Korea.

Rule-based System for Loading Multiple Items in Containers for Shipping (제품수송 컨터네이너의 적재를 위한 규칙기반시스템)

  • Park, Ji Hee;Lee, Gun Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.6
    • /
    • pp.403-412
    • /
    • 2013
  • This study figures out the concepts of container transport, logistical cost and the distribution of a company through studying documents, and to suggest logistical cost reduction approach, focused on the efficiency of transport which occupied the considerable portion of the total logistical cost of the company. We analyze and discuss the container loading of multiple items for multiple places of departure and arrival through a case study on S company in South Korea. We suggest a direction to reduce the logistical cost of the companies, analyzing the conditions of multiple items loading, and rule-based systems including an algorithm which determines container-loading for minimum freight expenses. We use data mining and OLAP tools of MS Analysis Services to produce loading rules for multiple items loading and generate OLAP cube and decision trees to validate the rules.

A Study on the Ripple Effect of Physical Distribution Service Industry on National Economy (물류서비스 산업의 국민경제적 파급효과 분석)

  • Jeong, Boon-Do;Hong, Geum-Woo
    • Journal of Korea Port Economic Association
    • /
    • v.24 no.2
    • /
    • pp.193-208
    • /
    • 2008
  • This study aims to analyse the ripple effect of Physical distribution service industry on national economy using input-output tables and present the results as data for political plans in this field. For the analysis, it uses input-output tables developed and published by Sank of Korea in 1998, 2000, and 2003. To sum up the results, production inducement effects are 1757 for railroad transport, 1688 for road transport and 1617 for loading. Import inducement effects of assistant services, loading, storage, warehouse and other transport-related services are low while the effects of water and air transport are high as follows: 0.679 and 0.558 respectively. Then, added-value inducement effects are presented as follows: 0.841 for railway transport, 0.828 for road transport, 0.962 for transport assistant service, 0.939 for loading, 0.938 for storage and warehouse, and 0.942 for other transport-related services. Sensitivity dispersion index of road transport is high while that of water transport, storage and warehouse is low. And influence coefficient of railway and road transport is high while that of water and air transport is low. In respect to the employment structure of Physical distribution service industry, 744,000 are employed for road transport industry, which is the largest number, 19,000 for air transport and 20,000 for assistant services, which is the least number.

  • PDF

Coupled Analysis of Hydrogen Transport Within ABAQUS (ABAQUS 를 이용한 수소확산 해석)

  • Oh, Chang-Sik;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.600-606
    • /
    • 2009
  • In this paper, the coupled model with hydrogen transport and elasto-plasticity behavior is introduced. This model is implemented to the general-purpose FE code, ABAQUS, via the user-defined subroutine UMAT and UMATHT. In UMAT, the spatial gradients of hydrostatic stress and hydrogen induced deformation are calculated, and then are passed into UMATHT. Heat transfer equation within UMATHT is substituted by hydrogen transport equation including the effects of stress states and strain hardening. To validate this model, the finite element analyses coupled with hydrogen transport and mechanical loading are performed for the boundary layer specimens with low and high strength steel properties. The FE results are compared with the previous studies by Taha and Sofronis (2001).

Transient heat transfer analysis using Galerkin finite element method for reinforced concrete slab exposed to high elevated temperature

  • Han, Byung-Chan;Kwon, Young-Jin;Lee, Byung-Jae;Kwon, Seung-Jun;Chae, Young-Suk
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1097-1112
    • /
    • 2016
  • Fire loading causes a critical collapse of RC (Reinforced Concrete) Structures since the embedded steels inside are relative week against high elevated temperature. Several numerical frameworks for fire resistance have been proposed, however they have limitations such as unstable convergence and long calculation period. In the work, 2-D nonlinear FE technique is proposed using Galerkin method for RC structures under fire loading. Closed-form element stiffness with a triangular element is adopted and verified with fire test on three RC slabs with different fire loading conditions. Several simulations are also performed considering fire loading conditions, water contents, and cover depth. The proposed numerical technique can handle time-dependent fire loading, convection, radiation, and material properties. The proposed technique can be improved through early-aged concrete behavior like moisture transport which varies with external temperature.

Structural integrity of KJRR-F fresh nuclear fuel under vehicle-induced vibration for normal transport condition

  • Jeong, Gil-Eon;Yang, Yun-Young;Bang, Kyoung-Sik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1355-1362
    • /
    • 2022
  • Nuclear fuel, including its fresh state, must be handled safely due to its critical and hazardous nature. Under normal transport conditions, several interactions take place among different components, such as transport cask used for loading the nuclear fuel and tie-down structure to attach with the vehicle. To ensure structural integrity of the nuclear fuel, vibrations and impacts transmitted from the vehicle must be sufficiently reduced. Therefore, in this study, we conducted two transportation tests from Daejeon to Kijang in Korea to verify the vehicle-induced vibrational characteristics of the KJRR-F fresh nuclear fuel when transported under normal transport conditions. The speed and location of the vehicle were obtained via GPS, and the accelerations between the vehicle and the KJRR-F fresh nuclear fuel were measured. Additionally, using the acceleration results, a structural analysis was conducted to confirm the structural integrity of the nuclear fuel under the most severe conditions during normal transport.

Data analysis of simulated fuel-loaded sea transportation tests under normal conditions of transport

  • JaeHoon Lim;Woo-seok Choi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.375-388
    • /
    • 2024
  • In this study, to evaluate the shock and vibration load characteristics of used fuel, a sea transportation test was conducted using simulated fuel assemblies under normal transport conditions. An overall test data analysis was performed based on the measured strain and acceleration data obtained from cruise, rotation, acceleration, braking, depth of water, and rolling tests. In addition, shock response spectrum and power spectral densities were obtained for each test case. Amplification and attenuation characteristics were investigated based on the load path. The load was amplified as it passed from the overpack to the simulated used fuel-assembly. As a result of the RMS trend analysis, the fuel-loading position of the transportation package affected the measured strain in the fuel rod, and the maximum strains were obtained at the spans with large spacing. However, even these maximum strains were very small compared to the fatigue strength and the cladding yield strength. Moreover, the fuel rods located on the side exhibited a larger strain value than those at the center.

Transport Risk Assessment for On-Road/Sea Transport of Decommissioning Waste of Kori Unit 1

  • Woo Yong Kim;Hyun Woo Song;Jisoo Yoon;Moon Oh Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.255-269
    • /
    • 2023
  • Compared to operational wastes, nuclear power plant (NPP) decommissioning wastes are generated in larger quantities within a short time and include diverse types with a wider range of radiation characteristics. Currently used 200 L drums and IP-2 type transport containers are inefficient and restrictive in packaging and transporting decommissioning wastes. Therefore, new packaging and transport containers with greater size, loading weight, and shielding performance have been developed. When transporting radioactive materials, radiological safety should be assessed by reflecting parameters such as the type and quantity of the package, transport route, and transport environment. Thus far, safety evaluations of radioactive waste transport have mainly targeted operational wastes, that have less radioactivity and a smaller amount per transport than decommissioning wastes. Therefore, in this study, the possible radiation effects during the transport from NPP to disposal facilities were evaluated to reflect the characteristics of the newly developed containers and decommissioning wastes. According to the evaluation results, the exposure dose to transport workers, handling workers, and the public was lower than the domestic regulatory limit. In addition, all exposure dose results were confirmed, through sensitivity analysis, to satisfy the evaluation criteria even under circumstances when radioactive materials were released 100% from the container.

Performance Analysis of A Shuttle Carrier at Automated Container Terminal (자동화 컨테이너 터미널의 Shuttle Carrier 이송능력 분석)

  • Ha, Tae-Young;Choi, Yong-Seok
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.3
    • /
    • pp.109-118
    • /
    • 2005
  • The purpose of this paper is to analyze transport ability of AGV(Automated Guided Vehicle) and SHC(SHuttle Carrier). The main difference between two types of transport vehicles is that AGV depends on container crane or transfer crane to do loading/unloading container, but SHC is very independent to it. Therefore, the transport ability of SHC is expected to be higher than AGV. So, in this paper, we established simulation model to evaluate two types of transport vehicles and analyzed the results. Simulation model was established to automated container terminal with perpendicular yard layout, and applied closed loop operation of transport vehicle between apron and stacking yard. In the result, SHC showed very superior than AGV aspect of container crane productivity and vehicle fleets.

  • PDF

Performance Analysis of A Shuttle Carrier at Automated Container Terminal (자동화 컨테이너 터미널의 셔틀 캐리어 이송능력 분석)

  • Ha, Tae-Young;Choi, Yong-Seok
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.05a
    • /
    • pp.57-63
    • /
    • 2005
  • The purpose of this paper is to analyze transport ability of AGV(Automated Guided Vehicle) and SHC(SHuttle Carrier). The main difference between two types of transport vehicles is that AGV depends on container crane or transfer crane to do loading/unloading container, but SHC is very independent to it. Therefore, the transport ability of SHC is expected to be higher than AGV, So, in this paper, we established simulation model to evaluate two types of transport vehicles and analyzed the results. Simulation model was established to automated container terminal with perpendicular yard layout, and applied closed loop operation of transport vehicle between apron and stacking yard. In the result, SHC showed very superior than AGV aspect of container crane productivity and vehicle fleets,

  • PDF